111??QO?ON?(ON?GM)?OG??QG?GM222114931749??2k?10ak2??(10ak2?ak2)?k??k?ak2 224222414949?7?)ak3. ?(29?15?3?2882133∴S?QNM:S?QNR?(ak):(35ak)?3:20. ??2分
4②当抛物线开口向下时,则此抛物线与y轴的正半轴交于点N,
同理,可得S?QNM:S?QNR?3:20. ??1分 综上所知,S?QNM:S?QNR的值为3:20. ??1分 21.解:
(1)m=-5,n=-3 (2)y=
4x+2 3(3)是定值.
因为点D为∠ACB的平分线,所以可设点D到边AC,BC的距离均为h, 设△ABC AB边上的高为H, 则利用面积法可得:
CM?hCN?hMN?H?? 222(CM+CN)h=MN﹒H
CM?CNMN?
HhCM?CN又 H=
MN化简可得 (CM+CN)﹒故
MN1?
CM?CNhy111?? CMCNh?c?322. 解:( 1)由已知得:?解得
??1?b?c?0c=3,b=2
∴抛物线的线的解析式为y??x?2x?3 (2)由顶点坐标公式得顶点坐标为(1,4)
所以对称轴为x=1,A,E关于x=1对称,所以E(3,0) 设对称轴与x轴的交点为F
所以四边形ABDE的面积=S?ABO?S梯形BOFD?S?DFE
2DBGAOFEx111AO?BO?(BO?DF)?OF?EF?DF 222111=?1?3?(3?4)?1??2?4 222==9
(3)相似
如图,BD=BG2?DG2?12?12?2 BE=BO2?OE2?32?32?32 DE=DF2?EF2?22?42?25 222所以BD?BE?20, DE?20即: BD?BE?DE,所以?BDE是直角三角形
222所以?AOB??DBE?90?,且所以?AOB??DBE.
AOBO2, ??BDBE223. 解(Ⅰ)当a?b?1,c??1时,抛物线为y?3x2?2x?1, 方程3x2?2x?1?0的两个根为x1??1,x2?1. 3∴该抛物线与x轴公共点的坐标是??1······································· 2分 0?. ·,0?和?,(Ⅱ)当a?b?1时,抛物线为y?3x2?2x?c,且与x轴有公共点.
?1
?3??
1对于方程3x2?2x?c?0,判别式??4?12c≥0,有c≤. ·································· 3分
3①当c?111时,由方程3x2?2x??0,解得x1?x2??. 333此时抛物线为y?3x2?2x??1?1与x轴只有一个公共点??,··························· 4分 0?. ·3?3?②当c?1时, 3x1??1时,y1?3?2?c?1?c, x2?1时,y2?3?2?c?5?c.
1由已知?1?x?1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为x??,
3?y1≤0,?1?c≤0,应有? 即?
y?0.5?c?0.?2?解得?5?c≤?1.
1综上,c?或?5?c≤?1. ···································································· 6分
3(Ⅲ)对于二次函数y?3ax2?2bx?c,
由已知x1?0时,y1?c?0;x2?1时,y2?3a?2b?c?0, 又a?b?c?0,∴3a?2b?c?(a?b?c)?2a?b?2a?b. 于是2a?b?0.而b??a?c,∴2a?a?c?0,即a?c?0.
∴a?c?0. ····························································································· 7分 ∵关于x的一元二次方程3ax2?2bx?c?0的判别式
??4b2?12ac?4(a?c)2?12ac?4[(a?c)2?ac]?0,
∴抛物线y?3ax2?2bx?c与x轴有两个公共点,顶点在x轴下方. ························· 8分 又该抛物线的对称轴x??b, 3ay 由a?b?c?0,c?0,2a?b?0, 得?2a?b??a, ∴
O 1 x 1b2???. 33a3又由已知x1?0时,y1?0;x2?1时,y2?0,观察图象,
可知在0?x?1范围内,该抛物线与x轴有两个公共点. ······································ 10分
24. 解:(1)∵点F在AD上, ∴AF?2a, ∴DF?b?2a,
1112DFAB?×(b?2a)×b?b2?ab. 2222(2)连结AF, 由题意易知AF∥BD,
1∴S△DBF?S△ABD?b2.
2(3)正方形AEFG在绕A点旋转的过程中,F点的轨迹是以点A为圆心,AF为半径的圆.
第一种情况:当b>2a时,存在最大值及最小值;
∴S△DBF?因为△BFD的边BD?2b,故当F点到BD的距离取得最大、最小值时,S△BFD取得最大、最小值.
如图②所示CF2?BD时,
S△BFD的最大值=S△BF2D?2b?b2?2ab1?2b???2a??,
??22?2??2b?b2?2ab1?2b??,
?2?2a???22??S△BFD的最小值=S△BF2D第二种情况:当b=2a时,存在最大值,不存在最小值;
b2?2ab.(如果答案为4a2或b2也可) S△BFD的最大值=
2
D F E F1 G A F2 O B C
25. 解:(1)取AB中点H,联结MH,
?M为DE的中点,?MH∥BE,MH?1(BE?AD). ···························· (1分) 2又?AB?BE,?MH?AB. ································································ (1分)
?S△ABM?11AB?MH,得y?x?2(x?0); ································· (2分)(1分) 22(x?4)2?22. ························································· (1分)
(2)由已知得DE??以线段AB为直径的圆与以线段DE为直径的圆外切, 1111?MH?AB?DE,即(x?4)??2?(4?x)2?22?. ······················ (2分)
?2222?44解得x?,即线段BE的长为; ···························································· (1分)
33(3)由已知,以A,N,D为顶点的三角形与△BME相似,
又易证得?DAM??EBM. ···································································· (1分) 由此可知,另一对对应角相等有两种情况:①?ADN??BEM;②?ADB??BME. ①当?ADN??BEM时,?AD∥BE,??ADN??DBE.??DBE??BEM. ?DB?DE,易得BE?2AD.得BE?8; ··············································· (2分) ②当?ADB??BME时,?AD∥BE,??ADB??DBE. ??DBE??BME.又?BED??MEB,?△BED∽△MEB.
?DEBE1222?2?(x?4)2?22?(x?4)2. ,即BE?EM?DE,得x?BEEM2解得x1?2,x2??10(舍去).即线段BE的长为2. ································· (2分) 综上所述,所求线段BE的长为8或2.
26. 解:方案一:由题意可得:MB?OB,
···························································· (1分) ?点M到甲村的最短距离为MB. ·
?点M到乙村的最短距离为MD.
?将供水站建在点M处时,管道沿MD,MB铁路建设的长度之和最小.
即最小值为MB?MD?3?23. ····························································· (3分)
方案二:如图①,作点M关于射线OE的对称点M?,则MM??2ME,连接AM?交OE于点P,则
1AM. 2?AM?2BM?6,?PE?3. ······························································· (4分) 在Rt△DME中,
∥PE ?DE?DM?sin60??23?113?3,ME?DM??23?3,
222?PE?DE,?P,D两点重合.即AM?过D点. ······································ (6分)
在线段CD上任取一点P?,连接P?A,P?M,P?M?,则P?M?P?M?. ?AP??P?M??AM?,
?把供水站建在乙村的D点处,管道沿DA,DM线路铺设的长度之和最小.
即最小值为AD?DM?AM??
B 甲村
F
AM2?MM?2?62?(23)2?43. ········· (7分)
北 东 G B F M? G?