煤巷锚杆支护与架棚支护技术经济分析对比 下载本文

中国矿业大学毕业设计说明书

industry with a mining system, i.e. rock breaking and cleaning that optimistics the work schedule at the face.

The initial idea that underpinned non-explosive rock breaking in SA evolved around breaking single burdens and cleaning such resulting small amount of rock to enable continuous short-time breaking cycles. Though firing small charge of propellant emissions(CO,NO and NO2)in the working environment can be kept at lower concentration enabling thus the implementation of a schedule of shorter breaks for face re-entry, if still required. It is convenient to encourage the search for a low capital cost and efficient face cleaning technology that can facilitate the implementation of single burden breaking. However it is sad to note the growing reverse trend of opting for an hybrid system of using propellant mining with multiple burden breaking to suit conventional cleaning technology.

Using propellant mining with multiple holes simultaneously broken defeats the purpose of adopting non-explosive technology. Continuous mining is achievable if manageable volume of rock, i.e. single or where possible few burdens(for instance 1m advance),is targeted and provided that a simple mechanical equipment is used for face cleaning in semi-mechinised and cost-effective maner. The industry needs to do justice to this technology by commissioning cleaning technology to match the fundamental principle of propellant breaking ,which is to create conditions conductive to continuous mining. Yonke has a conceptual design of what would be a locally made, purely mechanical, maintenance friendly, easily movable, cost-effective and efficient cleaning device to match propellant breaking for small breaks in continuous cycles,the right way for future stopping. 4

CONCLUSIONS

The motivation for SA mining industry to embark in trailing non-explosive rock breaking ststems has been to findout how mining could be carried out in stopes with minimum interruptions as opposed to the current situation which only enables for one blast(single advance)per day. Long re-entry times that are imposed on the industry by the mining legislation during which all workers are vacated from the mine hinder mine productivity. Mining cycles comprising of operations such as drilling,charging, breaking, making safe, supporting and

第 29 页

中国矿业大学毕业设计说明书

cleaning can be accommodated with five hours time, if propellant mining technology is used instead of conventional explosives. It is thus possible to increase the rate of production because four advances per day of 24 working hours would be achievable. Indeed, with such fast mining tempo special safety considerations would be required to account for the dynamic of rock stability in the excavations(geotechnical problems associated with ground response to fast rate of excavation). Other additional logistic problems that may be expected extend from the need for increased cleaning capacity to mining crew behavioural change underground, otherwise non-explosive mining offers tremendous safety and productivity advantage.

SA mining industry still has to be convinced of the edge of this technology. Current experience with propellant rock breaking systems is not determinant. The expectations are high. Claims are still to be substantiated by successful results on site. However it is still early days for this technology as extensive research and development(R&D)is still required. REFFERENCES

Cunningham,C.V.B., Threshold Blasting: reinventing the application of explosives for narrow reef mining.

http//www.explosives.co.za/content/news/whatsnew/thresholdblasting.asp Kabongo, K.K. Blasting induced damage in coal, Proceedings 21st International Conference on Blasting Techinques, SEE Tennessee, Nashville, USA, 1995 pp. 203-21

Kabongo, K.K. An investigation into coal damage during blasting, Ph D thesis, University of the Witwatersrand 1997, pp 64-70

Mey , J. Ro-Burst: Hydro-fracturing rock breaking technology ,WIPO/97/3, August 1997

Ozbay, M. U. A Study of the application of short-delay blasting to narrow stope gold mining in South Africa, 1982

Totra, E. D. A non-explosive continuous mining system for South Africa narrow vein mines. Proceedings of the Marcus Evans conference on “Blasting”.

第 30 页

中国矿业大学毕业设计说明书

September 2001

http:www.isee.org/journal/featurearticle.html

http:www.mining-technology.com/contractors/drilling/rocktech/index.

安全连续采矿的非爆破破岩技术

K.K.科邦格

摘要:同世界上的其它很多地区一样,南非的一些矿井采用钻爆法作为开采矿石的破

岩方式。然而,成本经济、高爆破采矿并不能保证采矿总成本是最合适的。低效能和爆破带来的自然风险,即乏善可陈的安全记录,尤其在深井中的安全报告,使广泛研究和向更安全、生产率更高的技术方面的发展成为迫切的要求。当然,机械化开采是最好的选择,然而,很多人试图在狭窄的而且很深的矿脉深处采用重型机械作业时,结果却令人失望。在过去的三年中,非爆破破岩技术取得了重大进展。工业上尽力寻找一个表面作业安全系统,提高生产率,确保地下安全采矿,阻止和控制未来采矿中受HIV/AIDS破坏的影响。基于非爆破破岩上的推动作用,使自己符合工业发展中的这种观点,非爆破破岩技术因此成为低成本但威胁生命的爆破技术和高资金投入但不灵活的机械化开采的中间选择。

第 31 页

中国矿业大学毕业设计说明书

工业中很多爆破产品正在受到检测,斯沃特利普斯?布德?巴斯特,若可斯普利特?布兰德的穿透圆锥裂缝(PCF)NXCO’S的铅硼玻璃和Altex’s Safex是其中的一小部分。这些系统有独特的优点,它们表明在不同情况下成功破岩的不同技术水平,尽管如此,它们都缺少大动力“精力”来稳定的消除其负面影响以使之达到工业的满意程度。基本上这些系统利用岩石中爆炸生成气体的能量来完成破岩的工作。防岩尘和可米101是近年来出现的最新产品,它们声明已克服这种缺点,它们还证明在试验中超过以前产品的一个明显特点是能把炮眼中的气体持续很长时间,尽管工业中连续采矿的操作仍然是个梦想,非爆破技术的发展到现在为止还没有成功地表明这种能力。本文将讨论非爆破破岩系统的优点,展现一些非爆试验结果,籍此使破岩技术朝着连续开采的方向发展,提高健康和安全采矿的生产率。

1 介绍

钻爆破岩技术有无可争议的优点,然而,它总和主要的健康和安全联系在一起,这归咎于诸如噪音、飞石、有毒气体、高冲击波、偶然的爆炸和管理瞎炮带来的直接后果的影响。确实,南非工业已经相对好地减小并控制这些危险,使事故记录的满意程度和风险都降到最小。然而,自从人类生活应当有其恰当的价值,无论如何,国家期望的是零事故。因此, 通过所有关注团体的这个要求的因素是向一个更安全开采系统方向发展,确保采矿业有一个更好的前景。卡尼翰姆(2002)指出了传统高爆开采的主要缺点。他观察到地下矿石开采受到与爆破作业相关的破坏的限制。因为时间的要求使完全转向连续开采难以实现,在爆炸之前和爆炸期间工人要暂时停止工作。应当注意到有一个在进入时期,同时,还要解决爆炸气体、有害气体和粉尘的问题。非爆破破岩系统表明无人关注如此大量失去时间的缺点,很多系统曾得到发展,也促进了工业的向前发展。虽然他们之间微弱的差别确保他们各自的特点,但是他们之间也存在许多共同特征:

(1)非爆破低冲击破岩; (2)更少碎石和岩尘产生;

(3)由于低冲击,保证了巷道的维护状况; (4)低有毒气体确保再工作和连续开采。

2 非爆破破岩

南非采矿业有全世界最高的伤亡事故发生率,这主要归咎于采矿的深度(地下2~3千米,甚至更深)。采场的岩石状况反映了独特的地质构造及活跃的地震运动。高爆开采加剧了上述情况对采矿的影响。另外,基于安全性考虑的是爆炸产生的巨大能量经常很难说明爆炸能量大部分释放在巷道两帮上。如果实现没有警告,这种能量的释放常常

第 32 页