½âÎö£ºÒòΪf(x)£½1£¬ËùÒÔlg(2x£4)£½1£¬ËùÒÔ2x£4£½10£¬ËùÒÔx£½7£»ÒòΪf(x)<0£¬ËùÒÔ0<2x£4<1£¬ËùÒÔ2 ´ð°¸£º7 (2£¬2.5) ˼Ïë·½·¨ÏµÁÐ1 ·ÖÀàÌÖÂÛ˼ÏëÑо¿Ö¸Êý¡¢¶ÔÊýº¯ÊýµÄÐÔÖÊ 12 ÒÑÖªº¯Êýf(x)£½loga(2x£a)(a>0ÇÒa¡Ù1)ÔÚÇø¼ä[£¬]ÉϺãÓÐf(x)>0£¬ÔòʵÊýaµÄÈ¡ 23 Öµ·¶Î§ÊÇ( ) 1 A£®(£¬1) 32 C£®(£¬1) 3 1 B£®[£¬1) 32 D£®[£¬1) 3 1244 ¡¾½âÎö¡¿ µ±00£¬¼´0< 233314112 £a<1£¬½âµÃ1ʱ£¬º¯Êýf(x)ÔÚÇø¼ä[£¬]ÉÏÊÇÔöº¯Êý£¬ËùÒÔloga(1 333231 £a)>0£¬¼´1£a>1£¬½âµÃa<0£¬´ËʱÎ޽⣮×ÛÉÏËùÊö£¬ÊµÊýaµÄÈ¡Öµ·¶Î§ÊÇ(£¬1)£® 3 ¡¾´ð°¸¡¿ A ±¾ÌâÀûÓÃÁË·ÖÀàÌÖÂÛ˼Ï룬ÔÚÑо¿Ö¸Êý¡¢¶ÔÊýº¯ÊýµÄÐÔÖÊʱ£¬³£¶Ôµ×ÊýaµÄÖµ½øÐзÖÀàÌÖÂÛ£¬ÊµÖÊÉÏ·ÖÀàÌÖÂÛ¾ÍÊÇ¡°»¯ÕûΪÁ㣬¸÷¸ö»÷ÆÆ£¬ÔÙ¼¯ÁãΪÕû¡±µÄÊýѧ˼Ï룮 3 ÒÑÖªº¯Êýy£½b£«ax2£«2x(a£¬bÊdz£ÊýÇÒa>0£¬a¡Ù1)ÔÚÇø¼ä[££¬0]ÉÏÓÐ 2 5 ymax£½3£¬ymin£½£¬ÊÔÇóa£¬bµÄÖµ£® 2 ½â£ºÁît£½x2£«2x£½(x£«1)2£1£¬ 3 ÒòΪx¡Ê[££¬0]£¬ËùÒÔt¡Ê[£1£¬0]£® 2 (1)Èôa>1£¬º¯Êýf(x)£½atÔÚ[£1£¬0]ÉÏΪÔöº¯Êý£¬ 1 ËùÒÔat¡Ê[£¬1]£¬ a 1 Ôòb£«ax2£«2x¡Ê[b£«£¬b£«1]£¬ a15???b£«a£½2£¬?a£½2£¬ ÒÀÌâÒâµÃ?½âµÃ? ?b£½2.???b£«1£½3£¬ (2)Èô0 1 ËùÒÔat¡Ê[1£¬]£¬ a 1 Ôòb£«ax2£«2x¡Ê[b£«1£¬b£«]£¬ a12b£«£½3£¬a£½£¬a3 ÒÀÌâÒâµÃ½âµÃ 53b£«1£½£¬b£½. 22 ?????? ?a£½2£¬? ×ÛÉÏ£¬a£¬bµÄֵΪ?»ò ?b£½2? ? ?3?b£½2. 2a£½£¬3 [»ù´¡Ìâ×éÁ·] 1£®ÊµÊýlg 4£«2lg 5µÄֵΪ( ) A£®2 C£®10 B£®5 D£®20 ½âÎö£ºÑ¡A.lg 4£«2lg 5£½2lg 2£«2lg 5£½2(lg 2 £«lg 5)£½2lg (2¡Á5)£½2lg 10£½2.¹ÊÑ¡A. ln£¨x£«3£© 2£®º¯Êýf(x)£½µÄ¶¨ÒåÓòÊÇ( ) 1£2xA£®(£3£¬0) C£®(£¡Þ£¬£3)¡È(0£¬£«¡Þ) B£®(£3£¬0] D£®(£¡Þ£¬£3)¡È(£3£¬0) ??x£«3>0£¬ln£¨x£«3£© ½âÎö£ºÑ¡A.ÒòΪf(x)£½£¬ËùÒÔҪʹº¯Êýf(x)ÓÐÒâÒ壬Ðèʹ?¼´£3 ?1£2x>0£¬1£2? 3£®(2020¡¤Õã½Ê¡ÃûУи߿¼Ñо¿ÁªÃËÁª¿¼)Èôlog83£½p£¬log35£½q£¬Ôòlg 5(ÓÃp¡¢q±íʾ)µÈÓÚ( ) 3p£«q A. 53pqC. 1£«3pq 1£«3pqB. p£«qD£®p2£«q2 ½âÎö£ºÑ¡C.ÒòΪlog83£½p£¬ËùÒÔlg 3£½3plg 2£¬ÓÖÒòΪlog35£½q£¬ËùÒÔlg 5£½qlg 3£¬ËùÒÔ3pq lg 5£½3pqlg 2£½3pq(1£lg 5)£¬ËùÒÔlg 5£½£¬¹ÊÑ¡C. 1£«3pq 4£®Èôº¯Êýf(x)£½ax £1 µÄͼÏó¾¹ýµã(4£¬2)£¬Ôòº¯Êýg(x)£½loga 1 µÄͼÏóÊÇ( ) x£«1 3 ½âÎö£ºÑ¡D.ÓÉÌâÒâ¿ÉÖªf(4)£½2£¬¼´a3£½2£¬a£½2. 133 ËùÒÔg(x)£½log2£½£log2(x£«1)£® x£«1 ÓÉÓÚg(0)£½0£¬ÇÒg(x)ÔÚ¶¨ÒåÓòÉÏÊǼõº¯Êý£¬¹ÊÅųýA£¬B£¬C. 5£®(2020¡¤Èð°²ËÄУÁª¿¼)ÒÑÖªº¯Êýf(x)£½log1|x£1|£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ( ) 2 1 £? £? £? £? D£®f(3) £?£½log1£¬ÒòΪ£1£½log12 log11£½0£»f(3)£½log12£½£1£¬ËùÒÔCÕýÈ·£® 226£®É躯Êýf(x)£½log1(x2£«1)£« 2 £¬Ôò²»µÈʽ3x2£«1 8 f(log2x)£«f(log1x)¡Ý2µÄ½â¼¯Îª( ) 2 A£®(0£¬2] C£®[2£¬£«¡Þ) 1?B.??2£¬2? 1 0£¬?¡È[2£¬£«¡Þ) D.??2?8 ½âÎö£ºÑ¡B.ÒòΪf(x)µÄ¶¨ÒåÓòΪR£¬f(£x)£½log1(x2£«1)£«2£½f(x)£¬ËùÒÔf(x)ΪRÉÏ 3x£«12µÄżº¯Êý£® Ò×ÖªÆäÔÚÇø¼ä[0£¬£«¡Þ)Éϵ¥µ÷µÝ¼õ£¬ Áît£½log2x£¬ËùÒÔlog1x£½£t£¬ 2 Ôò²»µÈʽf(log2x)£«f(log1x)¡Ý2¿É»¯Îªf(t)£«f(£t)¡Ý2£¬ 2 ¼´2f(t)¡Ý2£¬ËùÒÔf(t)¡Ý1£¬ ÓÖÒòΪf(1)£½log12£« 28 £½1£¬f(x)ÔÚ[0£¬£«¡Þ)Éϵ¥µ÷µÝ¼õ£¬ÔÚRÉÏΪżº¯Êý£¬ËùÒÔ£3£«1 1? 1¡Üt¡Ü1£¬¼´log2x¡Ê[£1£¬1]£¬ËùÒÔx¡Ê??2£¬2?£¬¹ÊÑ¡B. 11 7£®(2020¡¤Èð°²ÊиßÈýËÄУÁª¿¼)ÈôÕýÊýa£¬bÂú×ãlog2a£½log5b£½lg(a£«b)£¬Ôò£«µÄֵΪ ab________£® ½âÎö£ºÉèlog2a£½log5b£½lg(a£«b)£½k£¬ ËùÒÔa£½2k£¬b£½5k£¬a£«b£½10k£¬ËùÒÔab£½10k£¬ 11 ËùÒÔa£«b£½ab£¬Ôò£«£½1. ab´ð°¸£º1 8£®É躯Êýf(x)£½|logax|(0 ֵΪ£¬ÔòʵÊýaµÄֵΪ________£® 3 ½âÎö£º×÷³öy£½|logax|(0£¼a£¼1)µÄ´óÖÂͼÏóÈçͼ£¬Áî|logax|£½1. 1?1£a£¨1£a£©£¨a£1£©1 £1£½1£a£µÃx£½a»òx£½£¬ÓÖ1£a£?£½£¼0£¬ ?a?aaa1 ¹Ê1£a£¼£1£¬ a 12 ËùÒÔn£mµÄ×îСֵΪ1£a£½£¬a£½. 332 ´ð°¸£º 3 9£®(2020¡¤Ì¨ÖÝÄ£Äâ)ÒÑÖªº¯Êýf(x)£½loga(8£ax)(a>0£¬a¡Ù1)£¬Èôf(x)>1ÔÚÇø¼ä[1£¬2]ÉϺã³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª________£® ½âÎö£ºµ±a>1ʱ£¬f(x)£½loga(8£ax)ÔÚ[1£¬2]ÉÏÊǼõº¯Êý£¬ ÓÉf(x)>1ºã³ÉÁ¢£¬Ôòf(x)min£½loga(8£2a)>1£¬ 8½âµÃ1 3 1£¬? ´ð°¸£º??3? ??|log3x|£¬0£¼x¡Ü3£¬ 10£®ÒÑÖªº¯Êýf(x)£½?Èôa£¼b£¼c£¬ÇÒf(a)£½f(b)£½f(c)£¬Ôòa£«b£«cµÄ ?2£log3x£¬x£¾3£¬? È¡Öµ·¶Î§Îª________£®