Á¬ÐøÊ±¼äÐźźÍϵͳʱÓò·ÖÎö¼°MATLABʵÏÖ ÏÂÔØ±¾ÎÄ

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

¿Î³ÌÉè¼ÆÈÎÎñÊé

ѧÉúÐÕÃû: רҵ°à¼¶: Ö¸µ¼½Ìʦ: ¹¤×÷µ¥Î»: Ìâ Ä¿:

Á¬ÐøÊ±¼äÐźźÍϵͳʱÓò·ÖÎö¼°MATLABʵÏÖ

³õʼÌõ¼þ£º

MATLAB 6.5

ÒªÇóÍê³ÉµÄÖ÷ÒªÈÎÎñ£º

Ò»¡¢ÓÃMATLABʵÏÖ³£ÓÃÁ¬ÐøÊ±¼äÐźŵÄʱÓò²¨ÐΣ¨Í¨¹ý¸Ä±ä²ÎÊý£¬·ÖÎöÆäʱ

ÓòÌØÐÔ£©¡£

1¡¢µ¥Î»½×Ô¾Ðźţ¬2¡¢µ¥Î»³å¼¤Ðźţ¬3¡¢ÕýÏÒÐźţ¬4¡¢ÊµÖ¸ÊýÐźţ¬5¡¢ÐéÖ¸ÊýÐźţ¬6¡¢¸´Ö¸ÊýÐźš£

¶þ¡¢ÓÃMATLABʵÏÖÐźŵÄʱÓòÔËËã

1¡¢Ïà¼Ó £¬2¡¢Ïà³Ë £¬3¡¢Êý³Ë£¬4¡¢Î¢·Ö£¬5¡¢»ý·Ö

Èý¡¢ÓÃMATLABʵÏÖÐźŵÄʱÓò±ä»»£¨²ÎÊý±ä»¯£¬·ÖÎö²¨Ðα仯£© 1¡¢·´×ª£¬2¡¢Ê¹ÒÆ£¨³¬Ê±£¬ÑÓʱ£©£¬3¡¢Õ¹Ëõ£¬4¡¢µ¹Ï࣬5¡¢×ۺϱ仯 ËÄ¡¢ÓÃMATLABʵÏÖÐźżòµ¥µÄʱÓò·Ö½â 1¡¢ÐźŵĽ»Ö±Á÷·Ö½â£¬2¡¢ÐÅºÅµÄÆæÅ¼·Ö½â

Îå¡¢ÓÃMATLABʵÏÖÁ¬ÐøÊ±¼äϵͳµÄ¾í»ý»ý·ÖµÄ·ÂÕæ²¨ÐÎ ¸ø³ö¼¸¸öµäÐÍÀý×Ó£¬¶Ôÿ¸öÀý×Ó£¬ÒªÇó»­³ö¶ÔÓ¦²¨ÐΡ£

Áù¡¢ÓÃMATLABʵÏÖÁ¬ÐøÊ±¼äϵͳµÄ³å¼¤ÏìÓ¦¡¢½×Ô¾ÏìÓ¦µÄ·ÂÕæ²¨ÐΡ£ ¸ø³ö¼¸¸öµäÐÍÀý×Ó£¬ËÄÖÖµ÷Óøñʽ¡£

Æß¡¢ÀûÓÃMATLABʵÏÖÁ¬ÐøÊ±¼äϵͳ¶ÔÕýÏÒÐźš¢ÊµÖ¸ÊýÐźŵÄÁã״̬ÏìÓ¦µÄ·ÂÕæ²¨ÐΡ£

¸ø³ö¼¸¸öµäÐÍÀý×Ó£¬ÒªÇó¿ÉÒԸı伤ÀøµÄ²ÎÊý£¬·ÖÎö²¨Ðεı仯¡£

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

ʱ¼ä°²ÅÅ£º

ѧϰMATLABÓïÑԵĸſö µÚ1Ìì ѧϰMATLABÓïÑԵĻù±¾ÖªÊ¶ µÚ2¡¢3Ìì ѧϰMATLABÓïÑÔµÄÓ¦Óû·¾³£¬µ÷ÊÔÃüÁ»æÍ¼ÄÜÁ¦ µÚ4¡¢5Ìì ¿Î³ÌÉè¼Æ µÚ6-9Ìì ´ð±ç µÚ10Ìì

Ö¸µ¼½ÌʦǩÃû£º ϵÖ÷ÈΣ¨»òÔðÈνÌʦ£©Ç©Ãû£º

Äê ÔÂ Äê ÔÂ ÈÕ ÈÕ

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

Ŀ ¼

ÕªÒª .................................................................................................................................................. I ABSTRACT ................................................................................................................................... II Ð÷ÂÛ ................................................................................................................................................. 1 1 MATLAB¼ò½é ............................................................................................................................ 2 1.1 MATLABÓïÑÔ¹¦ÄÜ .............................................................................................................. 2 1.2 MATLABÓïÑÔÌØµã .............................................................................................................. 2 2³£ÓÃÁ¬ÐøÊ±¼äÐźŵÄʱÓò²¨ÐÎ .................................................................................................. 3 2.1µ¥Î»½×Ô¾ÐźŠ....................................................................................................................... 3 2.2µ¥Î»³å¼¤ÐźŠ....................................................................................................................... 3 2.3ÕýÏÒÐźŠ............................................................................................................................... 4 2.4ʵָÊýÐźŠ........................................................................................................................... 5 2.5ÐéÖ¸ÊýÐźŠ........................................................................................................................... 5 2.6¸´Ö¸ÊýÐźŠ........................................................................................................................... 6 3 Á¬ÐøÊ±¼äÐźŵÄʱÓòÔËËã ......................................................................................................... 7 3.1Ïà¼Ó ...................................................................................................................................... 7 3.2Ïà³Ë ...................................................................................................................................... 7 3.3Êý³Ë ...................................................................................................................................... 8 3.4΢·Ö ...................................................................................................................................... 8 3.5»ý·Ö ...................................................................................................................................... 9 4 Á¬ÐøÊ±¼äÐźŵÄʱÓò±ä»» ....................................................................................................... 10 4.1·´×ª ..................................................................................................................................... 10 4.2Ê±ÒÆ ..................................................................................................................................... 10 4.3Õ¹Ëõ ..................................................................................................................................... 11 4.4µ¹Ïà ..................................................................................................................................... 11 4.5×ۺϱ仯 ............................................................................................................................. 12 5Á¬ÐøÊ±¼äÐźżòµ¥µÄʱÓò·Ö½â ................................................................................................ 13 5.1ÐźŵĽ»Ö±Á÷·Ö½â ............................................................................................................. 13 5.2ÐÅºÅµÄÆæÅ¼·Ö½â ................................................................................................................. 14 6Á¬ÐøÊ±¼äϵͳµÄ¾í»ý»ý·ÖµÄ·ÂÕæ²¨ÐÎ .................................................................................... 15 7Á¬ÐøÊ±¼äϵͳµÄ³å¼¤ÏìÓ¦¡¢½×Ô¾ÏìÓ¦µÄ·ÂÕæ²¨ÐÎ ................................................................ 16 7.1 IMPULSE£¨£©º¯Êý ................................................................................................................ 17 7.2 STEP£¨£©º¯Êý ...................................................................................................................... 19 8Á¬ÐøÊ±¼äϵͳ¶ÔÕýÏÒÐźš¢ÊµÖ¸ÊýÐźŵÄÁã״̬ÏìÓ¦µÄ·ÂÕæ²¨ÐÎ .................................... 21 8.1 ÕýÏÒÐźŵÄÁã״̬ÏìÓ¦ ..................................................................................................... 21 8.2 ʵָÊýÐźŵÄÁã״̬ÏìÓ¦ ................................................................................................. 22 9С½á¼´ÐĵÃÌå»á ........................................................................................................................ 24 ÖÂл ............................................................................................................................................... 25 ²Î¿¼ÎÄÏ× ....................................................................................................................................... 26 ¸½Â¼ ............................................................................................................................................... 27

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

ÕªÒª

MATLABĿǰÒÑ·¢Õ¹³ÉΪÓÉMATLAB ÓïÑÔ¡¢MATLAB ¹¤×÷»·¾³¡¢MATLAB ͼÐδ¦Àíϵͳ¡¢MATLAB Êýѧº¯Êý¿âºÍMATLAB Ó¦ÓóÌÐò½Ó¿ÚÎå´ó²¿·Ö×é³ÉµÄ¼¯ÊýÖµ¼ÆË㡢ͼÐδ¦Àí¡¢³ÌÐò¿ª·¢ÎªÒ»ÌåµÄ¹¦ÄÜÇ¿´óµÄϵͳ¡£±¾´Î¿Î³ÌÉè¼ÆÔòÔÚÉîÈëÑо¿Á¬ÐøÊ±¼äÐźŸµÀïÒ¶¼¶Êý·ÖÎöÀíÂÛ֪ʶµÄ»ù´¡ÉÏ£¬ÀûÓÃMATLABÇ¿´óµÄͼÐδ¦Àí¹¦ÄÜ¡¢·ûºÅÔËË㹦ÄÜÒÔ¼°ÊýÖµ¼ÆË㹦ÄÜ£¬Í¨¹ýMATLAB±à³Ì½øÐÐͼÐι¦ÄÜ·ÂÕæ£¬´Ó¶øÊµÏÖÁ¬ÐøÊ±¼äÖÜÆÚÐÅºÅÆµÓò·ÖÎöµÄ·ÂÕæ²¨ÐΣ¬°üÀ¨ÒÔÏÂÄÚÈÝ£ºÓÃMATLABʵÏÖ³£ÓÃÁ¬ÐøÊ±¼äÐźŵÄʱÓò²¨ÐΣ»ÓÃMATLABʵÏÖÐźŵÄʱÓòÔËË㣻ÓÃMATLABʵÏÖÐźŵÄʱÓò±ä»»£»ÓÃMATLABʵÏÖÐźżòµ¥µÄʱÓò·Ö½â£»ÓÃMATLABʵÏÖÁ¬ÐøÊ±¼äϵͳµÄ¾í»ý»ý·ÖµÄ·ÂÕæ²¨ÐΣ»ÓÃMATLABʵÏÖÁ¬ÐøÊ±¼äϵͳµÄ³å¼¤ÏìÓ¦¡¢½×Ô¾ÏìÓ¦µÄ·ÂÕæ²¨ÐΣ»ÓÃMATLABʵÏÖÁ¬ÐøÊ±¼äϵͳ¶ÔÕýÏÒÐźš¢ÊµÖ¸ÊýÐźŵÄÁã״̬ÏìÓ¦µÄ·ÂÕæ²¨ÐΡ£

¹Ø¼ü´Ê£ºMATLAB£»Í¼Ðδ¦Àí£»Á¬ÐøÊ±¼äÐźźÍϵͳ£»Ê±Óò

I

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

Abstract

MATLAB now evolved into MATLAB language, MATLAB working environment, MATLAB graphics processing systems, MATLAB math library and the MATLAB application program interface has five major components of the set of numerical computation, graphics processing, program development as one powerful system. The curriculum design, in-depth study Fourier series analysis of continuous-time signal on the basis of theoretical knowledge, using MATLAB a powerful graphics processing capabilities, symbolic computing and numerical computing capabilities, through the functional simulation MATLAB graphical programming in order to achieve continuous time periodic signal frequency domain analysis of the simulation waveforms, including the following: Time domain waveform of continuous time signal by MATLAB; time domain operation signal by MATLAB; realize the time domain signal by MATLAB; MATLAB time domain signal simple decomposition; simulation waveform of convolution integrals of continuous time system with MATLAB; MATLAB impact simulation waveform impulse response, the step response of the continuous time system to achieve zero state; simulation waveform of sine signal, the real exponential signal response of continuous time system with MATLAB.

Keywords: MATLAB; image processing; continuous time signals and systems; time domain

II

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

Ð÷ÂÛ

ÔÚ¿ÆÑ§¼¼Êõ·ÉËÙ·¢Õ¹µÄ½ñÌ죬¼ÆËã»úÕýÖð²½½«¿Æ¼¼ÈËÔ±´Ó·±ÖصļÆË㹤×÷ÖнâÍѳöÀ´¡£ÔÚ½øÐпÆÑ§Ñо¿Ó빤³ÌÓ¦ÓÃÖУ¬ÍùÍùÐèÒª´óÁ¿µÄ¿ÆÑ§¼ÆË㣬һЩ¿Æ¼¼ÈËÔ±Ôø¾­³¢ÊÔʹÓô«Í³µÄ¸ß¼¶ÓïÑÔBasic¡¢Fortran ¼°C ÓïÑÔ±àд³ÌÐò£¬ÒÔ¼õÇṤ×÷Á¿¡£µ«±àÖÆ³ÌÐòÐèÒªÕÆÎո߼¶ÓïÑÔµÄÓï·¨£¬»¹Òª¶Ô¸÷ÖÖËã·¨½øÐÐÁ˽⣬Õâ¶Ô´ó¶àÊý¿Æ¼¼ÈËÔ±À´ËµÊDz»´óÏÖʵµÄ£¬¶øÇÒÒ²ÊÇûÓÐûÓбØÒªµÄ¡£MATLAB ÕýÊÇÔÚÕâÒ»Ó¦ÓÃÒªÇó±³¾°Ï²úÉúµÄÊýѧÀà¿Æ¼¼Ó¦ÓÃÈí¼þ¡£Ëü¾ßÓеĶ¥¼âµÄÊýÖµ¼ÆË㹦ÄÜ¡¢Ç¿´óµÄͼÐοÉÊÓ»¯¹¦Äܼ°¼ò½àÒ×ѧµÄ¡°¿ÆÑ§±ã½Ýʽ¡±¹¤×÷»·¾³ºÍ±à³ÌÓïÑÔ£¬´Ó¸ù±¾ÉÏÂú×ãÁ˿Ƽ¼ÈËÔ±¶Ô¹¤³ÌÊýѧ¼ÆËãµÄÒªÇ󣬲¢½«¿Æ¼¼ÈËÔ±´Ó·±ÖصÄÊýѧÔËËãÖнâ·Å³öÀ´£¬Òò¶øÔ½À´Ô½Êܵ½¹ã´ó¿Æ¼¼¹¤×÷Õߵįձ黶ӭ[1]¡£

MATLAB ÊÇmatrix ºÍlaboratory ǰÈý¸ö×ÖĸµÄËõд£¬Òâ˼ÊÇ¡°¾ØÕóʵÑéÊÒ¡±£¬ÊÇMathWorks ¹«Ë¾ÍƳöµÄÊýѧÀà¿Æ¼¼Ó¦ÓÃÈí¼þ¡£ÆäDos °æ±¾£¨MATLAB 1.0£©·¢ÐÐÓÚ1984 Ä꣬ÏÖÒÑÍÆ³öÁËWindows °æ±¾£¨MATLAB 5.3£©¡£¾­¹ýÊ®¶àÄêµÄ²»¶Ï·¢Õ¹ÓëÍêÉÆ£¬MATLAB ÒÑ·¢Õ¹³ÉΪÓÉMATLAB ÓïÑÔ¡¢MATLAB ¹¤×÷»·¾³¡¢MATLAB ͼÐδ¦Àíϵͳ¡¢MATLAB Êýѧº¯Êý¿âºÍMATLAB Ó¦ÓóÌÐò½Ó¿ÚÎå´ó²¿·Ö×é³ÉµÄ¼¯ÊýÖµ¼ÆË㡢ͼÐδ¦Àí¡¢³ÌÐò¿ª·¢ÎªÒ»ÌåµÄ¹¦ÄÜÇ¿´óµÄϵͳ¡£MATLAB ÓÉ¡°Ö÷°ü¡±ºÍÈýÊ®¶à¸öÀ©Õ¹¹¦ÄܺÍÓ¦ÓÃѧ¿ÆÐԵŤ¾ßÏ䣨Toolboxs£©×é³É¡£

Ŀǰ£¬MATLABÒѾ­³ÉΪ¹ú¼ÊÉÏ×îÁ÷Ðеĵç×Ó·ÂÕæ¼ÆËã»ú¸¨ÖúÉè¼ÆµÄÈí¼þ¹¤¾ß£¬ÏÖÔÚµÄMATLABÒѾ­²»½ö½öÊÇÒ»¸ö¡°¾ØÕóʵÑéÊÒ£¨Matrix Laboratory£©¡±£¬ËüÒѾ­³ÉΪһÖÖʵÓõġ¢È«ÐµļÆËã»ú¸ß¼¶ÓïÑÔ¡£

ÕýÊÇÓÉÓÚ MATLAB ÔÚÊýÖµ¼ÆËã¼°·ûºÅ¼ÆËãµÈ·½ÃæµÄÇ¿´ó¹¦ÄÜ£¬Ê¹MATLABһ·ÁìÏÈ£¬³ÉΪÊýѧÀà¿Æ¼¼Ó¦ÓÃÈí¼þÖеÄٮٮÕß¡£Ä¿Ç°£¬MATLAB ÒѳÉΪ¹ú¼ÊÉϹ«ÈϵÄ×îÓÅÐãµÄ¿Æ¼¼Ó¦ÓÃÈí¼þ¡£MATLAB µÄÉÏÊöÌØµã£¬Ê¹ËüÉîÊܹ¤³Ì¼¼ÊõÈËÔ±¼°¿Æ¼¼×¨¼ÒµÄ»¶Ó­£¬²¢ºÜ¿ì³ÉΪӦÓÃѧ¿Æ¼ÆËã»ú¸¨Öú·ÖÎö¡¢Éè¼Æ¡¢·ÂÕæ¡¢½ÌѧµÈÁìÓò²»¿ÉȱÉٵĻù´¡Èí¼þ¡£

1

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

1 MATLAB¼ò½é

1.1 MATLABÓïÑÔ¹¦ÄÜ

MATLABÊÇÒ»¸ö¸ß¾«¶ÈµÄ¿ÆÑ§¼ÆËãÓïÑÔ£¬Ëü½«¼ÆËã¡¢¿ÉÊÓ»¯±à³Ì½áºÏÔÚÒ»¸öÈÝÒ×ʹÓõĻ·¾³ÖУ¬ÔÚÕâ¸ö»·¾³ÖУ¬Óû§¿ÉÒÔ°ÑÌá³öµÄÎÊÌâºÍ½â¾öÎÊÌâµÄ°ì·¨ÓÃÊìϤµÄÊýѧ·ûºÅ±íʾ³öÀ´£¬ËüµÄµäÐÍʹÓðüÀ¨£º

£¨1£©ÊýѧºÍ¼ÆË㣻 £¨2£©ÔËËã·¨Ôò£» £¨3£©½¨Ä£¡¢·ÂÕæ£»

£¨4£©ÊýÖµ·ÖÎö¡¢Ñо¿ºÍ¿ÉÊÓ»¯£» £¨5£©¿ÆÑ§µÄ¹¤³ÌͼÐΣ»

£¨6£©Ó¦ÓóÌÐò¿ª·¢£¬°üÀ¨´´½¨Í¼ÐÎÓû§½Ó¿Ú¡£

1.2 MATLABÓïÑÔÌØµã

MATLAB ÊÇÒ»¸ö½»»¥Ê½ÏµÍ³£¬ËûµÄ»ù±¾Êý¾Ýµ¥ÔªÊÇÊý×飬Õâ¸öÊý×é²»ÒªÇó¹Ì¶¨µÄ´óС£¬Òò´Ë¿ÉÒÔÈÃÓû§½â¾öÐí¶à¼¼ÊõÉϵÄÎÊÌâ£¬ÌØ±ðÊÇÄÇЩ°üº¬¾ØÕóºÍʸÁ¿ÔËËãµÄÎÊÌâ¡£MATLABµÄÖ¸Áî±í´ïÓëÊýѧ¡¢¹¤³ÌÖг£ÓõÄϰ¹ßÐÎʽÏàËÆ£¬ÓëC¡¢Fortran¡¢µÈ¸ß¼¶ÓïÑÔÏà±È£¬ËüµÄÓï·¨¹æÔò¸ü¼òµ¥¡¢±í´ï¸ü·ûºÏ¹¤³Ìϰ¹ß£¬ÕýÒòΪÈç´Ë£¬ÈËÃÇÓÃMATLABÓïÑÔ±àд³ÌÐò¾ÍÓÌÈçÔÚ±ã¼ãÉÏÊéд¹«Ê½ºÍÇó½â£¬Òò¶øMATLAB±»³ÆÎª¡°±ã¼ãʽ¡±µÄ¿ÆÑ§¹¤³ÌÓïÑÔ¡£

MATLABµÄ×îÖØÒªÌØÕ÷ʹËûÓµÓнâ¾öÌØ¶¨Ó¦ÓÃÎÊÌâµÄ³ÌÐò×飬Ҳ¾ÍÊÇTOOLBOX(¹¤¾ßÏä)£¬ÈçÐźŴ¦Àí¹¤¾ßÏ䣬¿ØÖÆÏµÍ³¹¤¾ßÏä¡¢Éñ¾­ÍøÂ繤¾ßÏ䡢ģºýÂß¼­¹¤¾ßÏ䡢ͨÐŹ¤¾ßÏäºÍÊý¾Ý²É¼¯¹¤¾ßÏäµÈÐí¶àרÓù¤¾ßÏ䣬¶Ô´ó¶àÊýÓû§À´Ëµ£¬ÒªÏëÁé»î¡¢¸ßЧµØÔËÓÃÕâЩ¹¤¾ßÏ䣬ͨ³£¶¼ÐèҪѧϰÏàÓ¦µÄרҵ֪ʶ¡£

´ËÍ⣬¿ª·ÅÐÔÒ²ÐíÊÇMATLA×îÖØÒªºÍ×îÊÜ»¶Ó­µÄÌØµãÖ®Ò»¡£³ýÄÚ²¿º¯ÊýÍ⣬ËùÓеÄMATLABÖ÷ÒªÎļþºÍ¸÷¹¤¾ßÏäÎļþ¶¼ÊǿɶÁµÄ¡¢¿É¸ÄµÄÔ´Îļþ£¬ÒòΪ¹¤¾ßÏäʵ¼ÊÉÏÊÇÓÐÒ»×鸴ÔÓµÄMATLABº¯Êý£¨MÎļþ£©×é³É£¬ËüÀ©Õ¹ÁËMATLABµÄ¹¦ÄÜ£¬ÓÃÒÔ½â¾ö´ý¶¨µÄÎÊÌ⣬Òò´ËÓû§¿ÉÒÔͨ¹ý¶ÔÔ´Îļþ½øÐÐÐ޸ĺͼÓÈë×Ô¼º±àдµÄÎļþÈ¥¹¹½¨ÐµÄרÓù¤¾ßÏä¡£

2

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

2³£ÓÃÁ¬ÐøÊ±¼äÐźŵÄʱÓò²¨ÐÎ

Á¬ÐøÐźÅÓÖ³ÆÎªÄ£ÄâÐźţ¬ÆäÐźŴæÔÚÓÚÕû¸öʱ¼ä·¶Î§ÄÚ£¬°üÀ¨µ¥Î»½×Ô¾Ðźţ¬µ¥Î»³å¼¤Ðźţ¬ÕýÏÒÐźţ¬ÊµÖ¸ÊýÐźţ¬ÐéÖ¸ÊýÐźţ¬¸´Ö¸ÊýÐźš£

2.1µ¥Î»½×Ô¾ÐźÅ

µ¥Î»½×Ô¾Ðźŵ͍ÒåÈçÏ£º

µ¥Î»½×Ô¾ÐźŵÄMatlabʵÏÖ³ÌÐò¼û¸½Â¼£¬ÆäÐźÅͼÈçÏ£º

ͼ2.1 µ¥Î»½×Ô¾ÐźÅ

2.2µ¥Î»³å¼¤ÐźÅ

ÔÚÁ¬ÐøÊ±¼äϵͳÖУ¬µ¥Î»³å¼¤ÊÇÒ»ÖÖÖØÒªµÄÐźš£ÈκÎÒ»ÖÖÄ£ÄâÐźŶ¼ÄÜͨ¹ý³å¼¤¸øÓè½üËÆ£¬Í¨¹ýϵͳ¶Ô³å¼¤ÊäÈëµÄÏìÓ¦¿ÉÒÔÇóµÄËùÓÐÆäËûÊäÈëÐźŵÄÏìÓ¦¡£

µ¥Î»³å¼¤Ðźţ¨t£©Ò²³ÆÎªµÒÀ­¿Ë£¨Dirac£©·Ö²¼£¬¶¨ÒåÈçÏ£º

µÚÒ»¸öÌõ¼þ±íÃ÷´Ë

ÔÚËùÓÐt²»Îª0ÊÇȡֵΪ0£¬µÚ¶þ¸öÌõ¼þÊdzå»÷ϵÄÃæ»ýΪ1£¬Òò

ÐźžßÓе¥Î»Ãæ»ýµÄÌØÐÔ¡£

3

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

ÌØ±ðÐèÒªÖ¸³öµÄÊÇ£¬³å¼¤ÐźÅ

ÔÚt=0µãµÄÖµÊÇûÓж¨ÒåµÄ£¬²¢²»µÈÓÚÎÞÇî¡£

¿ÉÒÔ½üËÆµØÓÃÒ»¸öλÓÚÔ­µã¡¢·ù¶ÈΪA¡¢³ÖÐøÊ±¼äΪ1/AµÄÂö³åÀ´±íʾ£¬Õâ

ÀïAÊÇÒ»¸öºÜ´óµÄÕýÖµ¡£

t=1/A=1/50£¬µ¥Î»Âö³å

ͼ2.2 µ¥Î»³å¼¤ÐźÅ

µÄMatlabʵÏÖ³ÌÐò¼û¸½Â¼£¬ÆäÐźÅͼÈçÏ£º

2.3ÕýÏÒÐźÅ

ÕýÏÒÐźźÍÓàÏÒÐźŶþÕß½öÔÚÏàλÉÏÏà²î¦Ð/2£¬¾­³£Í³³ÆÎªÕýÏÒÐźţ¬Ò»°ãд×÷

»ò

»ò

·ù¶ÈA=3£¬ÆµÂÊf=5£¬ÏàÒÆ

ͼ2.3 ÕýÏÒÐźÅ

4

µÄÕýÏÒÐÅºÅÆäMatlabʵÏÖ³ÌÐò¼û¸½Â¼£¬ÆäÐźÅͼÈçÏ£º

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

2.4ʵָÊýÐźÅ

ʵָÊýÐźſÉÓÉÏÂÃæµÄ±í´ïʽÀ´±íʾ£º

ʽÖÐeÊÇ×ÔÈ»Êý2.718?£¬aºÍAÊÇʵÊý¡£Èôa>0£¬ÐźŽ«ËæÊ±¼ä¶øÔö³¤£¬Èôa<0£¬ÐźŽ«ËæÊ±¼ä¶øË¥¼õ£¬Èôa=0£¬ÐźŲ»ËæÊ±¼ä¶ø±ä»¯£¬³ÉΪֱÁ÷Ðźš£³£ÊýA±íʾָÊýÐźÅÔÚt=0µãµÄ³õʼֵ¡£

A=3£¬a=0.5µÄʵָÊýÐźÅ

ͼ2.4 ʵָÊýÐźÅ

µÄMatlabʵÏÖ³ÌÐò¼û¸½Â¼£¬ÆäÐźÅͼÈçÏ£º

2.5ÐéÖ¸ÊýÐźÅ

ÐéÖ¸ÊýÐźſÉÓÉÏÂÃæµÄ±í´ïʽÀ´±íʾ£º

A=2£¬

ͼ2.5 ÐéÖ¸ÊýÐźÅ

5

µÄÐéÖ¸ÊýÐźŵÄMatlabʵÏÖ³ÌÐò¼û¸½Â¼£¬ÆäÐźÅͼÈçÏ£º

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

2.6¸´Ö¸ÊýÐźÅ

¸´Ö¸ÊýÐźſÉÓÉÏÂÃæµÄ±í´ïʽÀ´±íʾ£º

A=1£¬a=-1£¬ºÅͼÈçÏ£º

ͼ2.6 ¸´Ö¸ÊýÐźÅ

µÄ¸´Ö¸ÊýÐźŵÄMatlabʵÏÖ³ÌÐò¼û¸½Â¼£¬ÆäÐÅ

6

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

3 Á¬ÐøÊ±¼äÐźŵÄʱÓòÔËËã

ÔÚÐźŵĴ«ÊäºÍ´¦Àí¹ý³ÌÖÐÍùÍùÐèÒª½øÐÐÐźŵÄÔËË㣬Ëü°üÀ¨ÐźŵÄÏà¼Ó¡¢Ïà³Ë¡¢Êý³Ë¡¢Î¢·Ö¡¢»ý·Ö¡£

3.1Ïà¼Ó

ҪʵÏÖÁ½ÐźŵÄÏà¼Ó£¬¼´f£¨t£©=f1£¨t£©+f2£¨t£©

f1£¨t£©Îªµ¥Î»½×Ô¾Ðźţ¬f2£¨t£©ÎªÕýÏÒÐźţ¬Á½ÐźÅÏà¼ÓµÄʵÏÖ³ÌÐò¼Ó¸½Â¼£¬ÆäÐźÅͼÈçÏ£º

ͼ3.1 Ïà¼Ó

3.2Ïà³Ë

ҪʵÏÖÁ½ÐźŵÄÏà³Ë£¬¼´f£¨t£©=f1£¨t£©*f2£¨t£©

f1£¨t£©Îªµ¥Î»½×Ô¾Ðźţ¬f2£¨t£©ÎªÕýÏÒÐźţ¬Á½ÐźÅÏà³ËµÄʵÏÖ³ÌÐò¼Ó¸½Â¼£¬ÆäÐźÅͼÈçÏ£º

ͼ3.2 Ïà³Ë

7

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

3.3Êý³Ë

ҪʵÏÖÐźŵÄÊý³Ë£¬¼´f£¨t£©=A*f1£¨t£©

A=2£¬f1£¨t£©Îªµ¥Î»½×Ô¾Ðźţ¬ÐźÅÊý³ËµÄʵÏÖ³ÌÐò¼Ó¸½Â¼£¬ÆäÐźÅͼÈçÏ£º

ͼ3.3 Êý³Ë

3.4΢·Ö

΢·Ö¼´ÇóÐźŵĵ¼Êý¡£

¶Ôº¯Êýf£¨t£©=t2ÇóÒ»½×΢·ÖµÄʵÏÖ³ÌÐò¼û¸½Â¼£¬ÆäÐźÅͼÈçÏ£º

ͼ3.4 ΢·Ö

8

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

3.5»ý·Ö

¶Ôf£¨t£©=t2º¯ÊýµÄÒ»´Î»ý·ÖµÄʵÏÖ³ÌÐò¼û¸½Â¼£¬ÆäÐźÅͼÈçÏ£º

ͼ3.5 »ý·Ö

9

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

4 Á¬ÐøÊ±¼äÐźŵÄʱÓò±ä»»

4.1·´×ª

Ðźŵķ´×ª¾ÍÊǽ«ÐźŵIJ¨ÐÎÒÔijÖáΪ¶Ô³ÆÖᷭת180?£¬½«ÐźÅf£¨t£©ÖеÄ×Ô±äÁ¿tÌæ»»³É-t¼´¿ÉµÃµ½Æä·´×ªÐźš£

ÐźÅf£¨t£©=tµÄ·´×ªÊµÏÖ³ÌÐò¼û¸½Â¼£¬ÆäÐźÅͼÈçÏ£º

ͼ4.1 ·´×ª

4.2Ê±ÒÆ

ʵÏÖÁ¬ÐøÊ±¼äÐźŵÄÊ±ÒÆ¼´f£¨t-t0£©»òÕßf£¨t+t0£©£¬³£Êýt0>0¡£ ÕýÏÒÐźŵÄÊ±ÒÆÊµÏÖ³ÌÐò¼û¸½Â¼£¬ÆäÐźÅͼÈçÏ£º

ͼ4.2 Ê±ÒÆ

10

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

4.3Õ¹Ëõ

ÐźŵÄÕ¹Ëõ¼´½«ÐźÅf£¨t£©ÖеÄ×Ô±äÁ¿tÌæ»»Îªat£¬a¡Ù0¡£ ÕýÏÒÐźŵÄÕ¹ËõʵÏÖ³ÌÐò¼û¸½Â¼£¬ÆäÐźÅͼÈçÏ£º

ͼ4.3 Õ¹Ëõ

4.4µ¹Ïà

Á¬ÐøÐźŵĵ¹ÏàÊÇÖ¸½«ÐźÅf(t)ÒÔºáÖáΪ¶Ô³ÆÖá¶ÔÕ۵õ½-f(t)¡£ ÕýÏÒÐźŵÄÕ¹ËõʵÏÖ³ÌÐò¼û¸½Â¼£¬ÆäÐźÅͼÈçÏ£º

ͼ4.4 µ¹Ïà

11

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

4.5×ۺϱ仯

½«f(t)=sin(t)/tͨ¹ý·´ñÞ¡¢ÒÆÎ»¡¢³ß¶È±ä»»ÓÉf(t)µÄ²¨Ðεõ½f(-2t+3)µÄ²¨ÐΡ£¸Ã±ä»¯µÄʵÏÖ³ÌÐò¼û¸½Â¼£¬ÆäÐźÅͼÈçÏ£º

ͼ4.5 ×ۺϱ仯

12

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

5Á¬ÐøÊ±¼äÐźżòµ¥µÄʱÓò·Ö½â

5.1ÐźŵĽ»Ö±Á÷·Ö½â

ÐźŵĽ»Ö±Á÷·Ö½â¼´½«Ðźŷֽâ³ÉÖ±Á÷·ÖÁ¿ºÍ½»Á÷·ÖÁ¿Á½²¿·ÖÖ®ºÍ£¬ÆäÖÐÖ±Á÷·ÖÁ¿¶¨ÒåΪ

fD£¨t£©=

½»Á÷·ÖÁ¿¶¨ÒåΪ

fA£¨t£©=f£¨t£©-fD£¨t£©

ÀýÈç¶Ôº¯Êýf£¨t£©=sin£¨t£©+2½øÐн»Ö±Á÷·Ö½â¡£ MATLAB ÃüÁî¼û¸½Â¼£¬·Ö½â²¨ÐÎͼÈçͼ5.1Ëùʾ

ͼ5.1 ÐźŵĽ»Ö±Á÷·Ö½â

13

/t

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

5.2ÐÅºÅµÄÆæÅ¼·Ö½â

ÐÅºÅµÄÆæÅ¼·Ö½â¼´½«Ðźŷֽâ³Éż·ÖÁ¿ºÍÆæ·ÖÁ¿Á½²¿·ÖÖ®ºÍ£¬Å¼·ÖÁ¿¶¨ÒåΪ

fe£¨t£©=fe£¨-t£©

Ææ·ÖÁ¿¶¨ÒåΪ

fo£¨t£©=-fo£¨-t£©

ÔòÈÎÒâÐźÅf£¨t£©¿Éд³É

ÉÏʽµÚÒ»²¿·ÖÊÇż·ÖÁ¿£¬µÚ¶þ²¿·ÖÊÇÆæ·ÖÁ¿£¬¼´

ÀýÈç¶Ôº¯Êýf£¨t£©=sin£¨t-0.1£©+t½øÐн»Ö±Á÷·Ö½â¡£ MATLAB ÃüÁî¼û¸½Â¼£¬·Ö½â²¨ÐÎͼÈçͼ5.2Ëùʾ

ͼ5.2 ÆæÅ¼·Ö½â

14

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

6Á¬ÐøÊ±¼äϵͳµÄ¾í»ý»ý·ÖµÄ·ÂÕæ²¨ÐÎ

¾í»ý»ý·ÖÔÚÐźÅÓëÏßÐÎϵͳ·ÖÎöÖоßÓзdz£ÖØÒªµÄÒâÒ壬ÊÇÐźÅÓëϵͳ·ÖÎö µÄ»ù±¾·½·¨Ö®Ò»¡£

Á¬ÐøÊ±¼äÐźŠf1(t)ºÍ f2(t)µÄ¾í»ý»ý·Ö£¨¼ò³ÆÎª¾í»ý£©f(t)¶¨ÒåΪ£º

f(t)= f1(t)* f2(t)=

1(t)f2(t-

)

Óɴ˿ɵõ½Á½¸öÓë¾í»ýÏà¹ØµÄÖØÒª½áÂÛ£¬¼´ÊÇ£º

£¨1£© f(t)= f1(t)* (t)£¬£¬¼´Á¬ÐøÐźſɷֽâΪһϵÁзù¶ÈÓÉ f (t) ¾ö¶¨µÄ³å¼¤ ÐźÅ(t) ¼°ÆäÆ½ÒÆÐźÅÖ®ºÍ£»

£¨2£©ÏßÐÎʱ²»±äÁ¬ÐøÏµÍ³£¬ÉèÆäÊäÈëÐźÅΪ f (t) £¬µ¥Î»ÏìӦΪ h (t ) £¬ÆäÁã״̬ÏìӦΪ y (t)£¬ÔòÓУºy (t ) = f (t) ?h (t)¡£

Óà MATLAB ʵÏÖÁ¬ÐøÐźÅf 1(t)Óëf2(t)¾í»ýµÄ¹ý³ÌÈçÏ£º

£¨1£©½«Á¬ÐøÐźÅf 1(t)Óëf2(t)ÒÔʱ¼ä¼ä¸ô?½øÐÐÈ¡Ñù£¬µÃµ½ÀëÉ¢ÐòÁÐf 1(k?)ºÍf2(k?)£» £¨2£©¹¹ÔìÓë f 1(k?)ºÍf2(k?)Ïà¶ÔÓ¦µÄʱ¼äÏòÁ¿k1ºÍk2 £» £¨3£©µ÷Óà conv()º¯Êý¼ÆËã¾í»ý»ý·Ö f (t) µÄ½üËÆÏòÁ¿ f (n?)£» £¨4£©¹¹Ôì f (n?)¶ÔÓ¦µÄʱ¼äÏòÁ¿ k¡£ ¾í»ýʵÏÖ³ÌÐò¼û¸½Â¼¡£ ÀýÒ»£º

ͼ6.1 ÀýÒ»

15

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

ʵÏÖ³ÌÐòÈçÏ£º p=0.1; k1=0:p:2; f1=0.5*k1; k2=k1; f2=f1;

[f,k]=sconv(f1,f2,k1,k2,p) Àý¶þ£º

ͼ6.2 Àý¶þ

ʵÏÖ³ÌÐòÈçÏ£º p=0.1; k1=0:p:2;

f1=rectpuls(k1-1,length(k1)); k2=k1; f2=f1;

[f,k]=sconv(f1,f2,k1,k2,p)

16

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

7Á¬ÐøÊ±¼äϵͳµÄ³å¼¤ÏìÓ¦¡¢½×Ô¾ÏìÓ¦µÄ·ÂÕæ²¨ÐÎ

¶ÔÓÚÁ¬ÐøÊ±¼äϵͳ£¬Çó½âϵͳµÄ³å¼¤ÏìÓ¦h(t)ºÍ½×Ô¾ÏìÓ¦g(t)¶ÔÎÒÃǽøÐÐÁ¬ÐøÏµÍ³µÄ·ÖÎö¾ßÓзdz£ÖØÒªµÄÒâÒå¡£MATLABΪÓû§ÌṩÁËרÃÅÓÃÓÚÇóÁ¬ÐøÏµÍ³³å¼¤ÏìÓ¦ºÍ½×Ô¾ÏìÓ¦²¢»æÖÆÆäʱÓò²¨Ðεĺ¯Êýimpulse£¨£©ºÍstep£¨£©¡£

ÔÚµ÷ÓÃimpulse£¨£©ºÍstep£¨£©º¯Êýʱ£¬ÎÒÃÇÐèÒªÓÃÏòÁ¿À´¶ÔÁ¬ÐøÊ±¼äϵͳ½øÐзÖÎö¡£ ÉèÃèÊöÁ¬ÐøÏµÍ³µÄ΢·Ö·½³ÌΪ£º

(i)

iy(t)=

jx(j)

(t)

ÔòÎÒÃÇ¿ÉÓÃÏòÁ¿AºÍBÀ´±íʾ¸Ãϵͳ£¬¼´£º

A=[AN,AN-1,¡­¡­A1,A0] B=[BN,BN-1,¡­¡­B1,B0]

×¢Ò⣬ÏòÁ¿AºÍBµÄÔªËØÒ»¶¨ÒªÒÔ΢·Ö·½³ÌÖÐʱ¼äÇ󵼵ĽµÃÝ´ÎÐòÀ´ÅÅÁУ¬ÇÒȱÏîÒªÓÃ0À´²¹Æë¡£ÀýÈ磬¶Ô΢·Ö·½³Ì¶ÔÓ¦ÏòÁ¿Ó¦ÎªA=[1 3 2]£¬B=[1 0 1]¡£

£¬Ôò±íʾ¸ÃϵͳµÄ

7.1 impulse£¨£©º¯Êý

º¯Êýimpulse£¨£©½«»æ³öÓÉÏòÁ¿ a ºÍ b ±íʾµÄÁ¬ÐøÏµÍ³ÔÚÖ¸¶¨Ê±¼ä·¶Î§Äڵij弤ÏìÓ¦h(t)µÄʱÓò²¨ÐÎͼ£¬²¢ÄÜÇó³öÖ¸¶¨Ê±¼ä·¶Î§Äڳ弤ÏìÓ¦µÄÊýÖµ½â¡£

impulse£¨£©º¯ÊýÓÐÈçÏÂËÄÖÖµ÷Óøñʽ£º

£¨1£©impulse(b,a)£º¸Ãµ÷ÓøñʽÒÔĬÈÏ·½Ê½»æ³öÏòÁ¿ AºÍB¶¨ÒåµÄÁ¬ÐøÏµÍ³µÄ³å¼¤ÏìÓ¦µÄʱÓò²¨ÐÎ ¡£ÀýÈçÃèÊöÁ¬ÐøÏµÍ³µÄ΢·Ö·½³ÌΪ

ÔËÐÐÈçÏ MATLAB ÃüÁ a=[1 5 6]; b=[3 2]; impulse(b,a);

Ôò»æ³öϵͳµÄ³å¼¤ÏìÓ¦²¨ÐΣ¬Èçͼ7.1.1Ëùʾ¡£

17

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

ͼ7.1.1Á¬ÐøÏµÍ³µÄ³å¼¤ÏìÓ¦1

£¨2£©impulse(b,a,t)£º»æ³öϵͳÔÚ 0¡«t ʱ¼ä·¶Î§Äڳ弤ÏìÓ¦µÄʱÓò²¨ÐΡ£¶ÔÉÏÀý£¬ÈôÔËÐÐÃüÁî impulse(b,a,10)£¬Ôò»æ³öϵͳÔÚ 0¡«10Ã뷶ΧÄڳ弤ÏìÓ¦µÄʱÓò²¨ÐΣ¬Èçͼ7.1.2Ëùʾ.

ͼ7.1.2 Á¬ÐøÏµÍ³µÄ³å¼¤ÏìÓ¦2

£¨3£©impulse(b,a,t1:p:t2)£º»æ³öÔÚ t1~t2 ʱ¼ä·¶Î§ÄÚ£¬ÇÒÒÔʱ¼ä¼ä¸ô p¾ùÔÈÈ¡ÑùµÄ³å¼¤ÏìÓ¦²¨ÐΡ£¶ÔÉÏÀý£¬ÈôÔËÐÐÃüÁî impulse(b,a,1:0.1:2)£¬Ôò»æ³ö 1¡«2ÃëÄÚ£¬Ã¿¸ô0.1ÃëÈ¡ÑùµÄ³å¼¤ÏìÓ¦µÄʱÓò²¨ÐΣ¬Èçͼ 7.1.3Ëùʾ¡£

£¨4£©y=impulse(b,a,t1:p:t2)£º²»»æ³ö²¨ÐΣ¬¶øÊÇÇó³öϵͳ³å¼¤ÏìÓ¦µÄÊýÖµ½â¡£¶ÔÉÏÀý£¬ÈôÔËÐÐÃüÁî y=impulse(b,a,0:0.2:2)£¬ÔòÔËÐнá¹ûΪ£º

y =3.0000 1.1604 0.3110 -0.0477 -0.1726 -0.1928 -0.1716 -0.1383 -0.1054 -0.0777 -0.0559

18

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

ͼ7.1.3 Á¬ÐøÏµÍ³µÄ³å¼¤ÏìÓ¦3

7.2 step£¨£©º¯Êý

step£¨£©º¯Êý¿É»æ³öÁ¬ÐøÏµÍ³µÄ½×Ô¾ÏìÓ¦ g(t)ÔÚÖ¸¶¨Ê±¼ä·¶Î§µÄʱÓò²¨Ðβ¢ÄÜÇó³öÆäÊýÖµ½â£¬ºÍimpulse£¨£©º¯ÊýÒ»ÑùÒ²ÓÐËÄÖÖµ÷Óøñʽ¡£

£¨1£©step(b,a)£º¸Ãµ÷ÓøñʽÒÔĬÈÏ·½Ê½»æ³öÏòÁ¿ AºÍB¶¨ÒåµÄÁ¬ÐøÏµÍ³µÄ½×Ô¾ÏìÓ¦µÄʱÓò²¨ÐÎ ¡£ÀýÈçÃèÊöÁ¬ÐøÏµÍ³µÄ΢·Ö·½³ÌΪ

ÔËÐÐÈçÏ MATLAB ÃüÁ a=[1 5 6]; b=[3 2]; step(b,a);

Ôò»æ³öϵͳµÄ½×Ô¾ÏìÓ¦²¨ÐΣ¬Èçͼ7.2.1Ëùʾ¡£

ͼ7.2.1 Á¬ÐøÏµÍ³µÄ½×Ô¾ÏìÓ¦1

19

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

£¨2£©step(b,a,t)£º»æ³öϵͳÔÚ 0¡«t ʱ¼ä·¶Î§ÄÚ½×Ô¾ÏìÓ¦µÄʱÓò²¨ÐΡ£¶ÔÉÏÀý£¬ÈôÔËÐÐÃüÁî step(b,a,10)£¬Ôò»æ³öϵͳÔÚ 0¡«10Ã뷶ΧÄÚ½×Ô¾ÏìÓ¦µÄʱÓò²¨ÐΣ¬Èçͼ7.2.2Ëùʾ.

ͼ7.2.2 Á¬ÐøÏµÍ³µÄ½×Ô¾ÏìÓ¦2

£¨3£©step(b,a,t1:p:t2)£º»æ³öÔÚ t1~t2 ʱ¼ä·¶Î§ÄÚ£¬ÇÒÒÔʱ¼ä¼ä¸ôp¾ùÔÈÈ¡ÑùµÄ½×Ô¾ÏìÓ¦²¨ÐΡ£¶ÔÉÏÀý£¬ÈôÔËÐÐÃüÁî step(b,a,1:0.1:2)£¬Ôò»æ³ö1¡«2ÃëÄÚ£¬Ã¿¸ô0.1ÃëÈ¡ÑùµÄ½×Ô¾ÏìÓ¦µÄʱÓò²¨ÐΣ¬Èçͼ7.2.3Ëùʾ¡£

ͼ7.2.3 Á¬ÐøÏµÍ³µÄ½×Ô¾ÏìÓ¦3

£¨4£©y=step(b,a,t1:p:t2)£º²»»æ³ö²¨ÐΣ¬¶øÊÇÇó³öϵͳ½×Ô¾ÏìÓ¦µÄÊýÖµ½â¡£¶ÔÉÏÀý£¬ÈôÔËÐÐÃüÁî y=step(b,a,0:0.2:2)£¬ÔòÔËÐнá¹ûΪ£º

y= 0 0.393 0.529 0.550 0.525 0.488 0.451 0.420 0.396 0.377 0.364

20

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

8Á¬ÐøÊ±¼äϵͳ¶ÔÕýÏÒÐźš¢ÊµÖ¸ÊýÐźŵÄÁã״̬ÏìÓ¦µÄ·ÂÕæ²¨ÐÎ

MATLABÖеĺ¯Êýlsim£¨£©ÄܶÔ΢·Ö·½³ÌÃèÊöµÄLTIÁ¬ÐøÊ±¼äϵͳµÄÏìÓ¦½øÐзÂÕæ¡£¸Ãº¯ÊýÄÜ»æÖÆÁ¬ÐøÊ±¼äϵͳÔÚÖ¸¶¨µÄÈÎÒâʱ¼ä·¶Î§ÄÚϵͳÏìÓ¦µÄʱÓò²¨ÐÎͼ£¬»¹ÄÜÇó³öÁ¬ÐøÊ±¼äϵͳÔÚÖ¸¶¨µÄÈÎÒâʱ¼ä·¶Î§ÄÚϵͳÏìÓ¦µÄÊýÖµ½â£¬º¯Êýlsim£¨£©µÄµ÷ÓøñʽÈçÏ£º

lsim(b,a,x,t)

Ôڸõ÷ÓøñʽÖУ¬aºÍbÊÇÓÉÃèÊöϵͳµÄ΢·Ö·½³Ìϵͳ¾ö¶¨µÄ±íʾ¸ÃϵͳµÄÁ½¸öÐÐÏòÁ¿¡£xºÍtÔòÊDZíʾÊäÈëÐźŵÄÐÐÏòÁ¿£¬ÆäÖÐtΪ±íʾÊäÈëÐźÅʱ¼ä·¶Î§µÄÏòÁ¿£¬xÔòÊÇÊäÈëÐźÅÔÚÏòÁ¿t¶¨ÒåµÄʱ¼äµãÉϵijéÑùÖµ¡£¸Ãµ÷Óøñʽ½«»æ³öÏòÁ¿bºÍaËù¶¨ÒåµÄÁ¬ÐøÏµÍ³ÔÚÊäÈëÁ¿ÎªÏòÁ¿xºÍtËù¶¨ÒåµÄÐźÅʱ£¬ÏµÍ³µÄÁã״̬ÏìÓ¦µÄʱÓò·ÂÕæ²¨ÐΣ¬ÇÒʱ¼ä·¶Î§ÓëÊäÈëÐźÅÏàͬ¡£

8.1 ÕýÏÒÐźŵÄÁã״̬ÏìÓ¦

ÃèÊöijÁ¬ÐøÊ±¼äϵͳµÄ΢·Ö·½³ÌΪ

µ±ÊäÈëÐźÅΪMATLABÃüÁîÈçÏ£º clc; a=[1,2,1]; b=[1,2]; p=0.5; t=0:p:5; x=sin(2*pi*t); lsim(b,a,x,t); hold on; p=0.2; t=0:p:5;

21

ʱ£¬¸ÃϵͳµÄÁã״̬ÏìÓ¦r£¨t£©

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

x=sin(2*pi*t); lsim(b,a,x,t); p=0.01; t=0:p:5; x=sin(2*pi*t); lsim(b,a,x,t); hold off;

ͼ8.1ÕýÏÒÐźŵÄÁã״̬ÏìÓ¦

8.2 ʵָÊýÐźŵÄÁã״̬ÏìÓ¦

ÃèÊöijÁ¬ÐøÊ±¼äϵͳµÄ΢·Ö·½³ÌΪ

µ±ÊäÈëÐźÅΪMATLABÃüÁîÈçÏ£º clc; a=[1,2,1];

22

ʱ£¬¸ÃϵͳµÄÁã״̬ÏìÓ¦r£¨t£©

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

b=[1,2]; p=0.5; t=0:p:5; x=exp(-2*t); lsim(b,a,x,t); hold on; p=0.3; t=0:p:5; x=exp(-2*t); lsim(b,a,x,t); p=0.01; t=0:p:5; x=exp(-2*t); lsim(b,a,x,t); hold off;

ͼ8.2ʵָÊýÐźŵÄÁã״̬ÏìÓ¦

ͼ8.1¡¢8.2ÖÐÀ¶Ïß¡¢ÂÌÏß¡¢ºìÏß·Ö±ð´ú±íp=0.5¡¢p=0.3¡¢p=0.01¡£ÏÔÈ»¿ÉÒÔ¿´³ö£¬º¯Êýlsim£¨£©¶ÔϵͳÏìÓ¦½øÐзÂÕæµÄЧ¹ûÈ¡¾öÓÚÏòÁ¿tµÄʱ¼ä¼ä¸ôµÄÃܼ¯³Ì¶È¡£Í¼8.1¡¢8.2»æ³öÁËÉÏÊöϵͳÔÚ²»Í¬³éÑùʱ¼ä¼ä¸ôʱº¯Êýlsim£¨£©·ÂÕæµÄÇé¿ö£¬¿É¼û³éÑùʱ¼ä¼ä¸ôԽС·ÂÕæÐ§¹ûÔ½ºÃ¡£

23

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

9С½á¼´ÐĵÃÌå»á

±¾´Î¿Î³ÌÉè¼ÆÖÁ´ËÒѾ­½Ó½üβÉù£¬Ò»ÖܵÄʱ¼äËäÈ»ºÜ¶ÌÔÝ£¬µ«ÔÚÕâÒ»¸öÐÇÆÚµÄÉè¼Æ¹ý³ÌÖÐÊÕ»ñÆÄ¶à¡£Éè¼ÆµÄºËÐÄÄÚÈݾÍÊÇÀûÓÃMATLABÇ¿´óµÄͼÐδ¦Àí¹¦ÄÜ£¬·ûºÅÔËË㹦ÄÜÒÔ¼°ÊýÖµ¼ÆË㹦ÄÜ£¬ÊµÏÖÁ¬ÐøÊ±¼äÖÜÆÚÐÅºÅÆµÓò·ÖÎöµÄ·ÂÕæ²¨ÐΡ£Õû¸öÉè¼Æ¹ý³ÌÖÐÊ×ÏȶÔËùѧµÄÐźÅÓëϵͳÓëÊý×ÖÐźŴ¦ÀíÓÐÁ˸üÉîµÄÁ˽⣬±ÈÈ縵Á¢Ò¶¼¶Êý¡¢ÐÅºÅÆµÆ×µÈ£»Æä´Î£¬ÊµÏÖ¹ý³ÌÊÇͨ¹ýMATLABÈí¼þÍê³ÉµÄ£¬MATLAB µÄͼÐι¦ÄÜÇ¿´ó£¬¾ßÓÐÁ¼ºÃµÄÈË»ú½çÃæ£¬´Ë´ÎÉè¼Æ¹ý³ÌÖÐÊìÁ·ÁËMATLABµÄ±à³Ì£¬ÕÆÎÕÁ˺ܶຯÊýµÄ×÷Óü°Ê¹Ó÷½·¨£»×îºó£¬Í¨¹ý´Ë´Î¿Î³ÌÉè¼Æ£¬ÎÒ¶ÔÉè¼ÆËùÓõ½µÄÈí¼þMATLABÓÐÁ˸ü¼ÓÉî¿ÌµØÁ˽⣬MATLAB²»¹ÜÔÚÊýÖµ¼ÆËã·½ÃæµÄ¹¦ÄܺÜÇ¿´ó£¬¶øÇÒÆäͼÐηÂÕæ¹¦ÄܸüÄÜÂú×ã¸÷¸öÁìÓòµÄÐèÒª£¬Òò´ËÎÒÃÇÒÔºó¸üÒª¾­³£ÔËÓÃMATLABÈí¼þ£¬Ê¹Æä³ÉΪ×Ô¼º²»¿É»òȱµÄ¹¤¾ß¡£

ÔÚдÏà¹ØÔ´³ÌÐòµÄʱºò£¬ÎÒ»¹ÊÕË÷ÁË´óÁ¿µÄÍøÕ¾£¬ÔÚÍøÉÏÊÕË÷ÁËºÜ¶à¹ØÓÚMATLABµÄ×ÊÁÏ¡£ÔÚÕâ¸ö¹ý³ÌÖÐÎÒ·¢ÏÖÍøÉÏÓкܶàÓÐÓõÄ֪ʶ¡£ÒÔºóÓ¦¸Ã¶à×¢Ò⣬³ä·ÖºÏÀíµÄÀûÓÃÍøÂ磬ͨ¹ýÍøÂçÀ´Ñ§Ï°¶«Î÷¡£ÔÚÊÕ¼¯×ÊÁϵĽ׶ÎÎÒ¸´Ï°ÁËÊý×ÖÐźÅϵͳ´¦ÀíÀïµÄÏà¹ØÖªÊ¶¡£¶ÔÒÔǰµÄÀíÂÛ֪ʶÓÐÁ˸ü½øÒ»²½µÄÈÏʶºÍÀí½â¡£Í¨¹ýÕâ´Î¿Î³ÌÉè¼ÆÎÒ»¹¶ÔmathtypeÊýѧ¹«Ê½±à¼­Æ÷ÓÐÁËÒ»¶¨µÄÁ˽⣬²¢ÇÒ»áÓÃËü±à¼­¹«Ê½¡£¶ÔwordÒ²ÓÐÁ˽øÒ»²½µÄÕÆÎÕ¡£ ËäÈ»ÎÒ˳ÀûÍê³ÉÁ˿γÌÉè¼ÆµÄÒªÇ󣬵«ÊÇÎҸоõµ½ÎÒ¶ÔMATLABµÄÀí½âÎÒÕÆÎÕ»¹Í£ÁôÔڱȽÏdzµÄ²ã´Î¡£ÒªÏëÕæÕýÕÆÎÕËü»¹ÐèÒª¼ÌÐøÅ¬Á¦Ñ§Ï°Ëü¡£

Õâ´Î¿Î³ÌÉè¼ÆÒ²Ê¹ÎÒÃ÷°×ÁËÔÚ֪ʶµÄÁìÓòÀïÎÒ»¹ÓкܶàºÜ¶àµÄ²»×㣬²¢ÇÒÔÙÒ»´ÎµÄÉîÉîµÄÌå»áµ½ÀíÂÛºÍʵ¼ùÖ®¼ä»¹Óкܵ½µÄ²î±ð¡£ÔÚÒÔºóµÄѧϰÖÐÓ¦¸Ã¶à¶àµÄ×¢Òâʵ¼ù֪ʶµÄѵÁ·ºÍ»ýÀÛ¡£ÔÚÒÔºóµÄѧϰÉú»îÖÐÒª²»¶ÏµÄ¿ªÍØ×Ô¼ºµÄ¶¯ÊÖÄÜÁ¦£¬²»¶ÏµÄѵÁ·×Ô¼ºµÄ¶¯ÊÖÄÜÁ¦¡£Õâ´Î¿Î³ÌÉè¼ÆÈÃÎÒÉîÉîµÄÃ÷°×ÁË×Ô¼ºÒÔºó¸Ã×öʲô£¬¸ÃÔõôȥ×ö¡£

24

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

ÖÂл

¸ÐлѧУ¸øÎÒÃÇÕâ´ÎMATLAB¿Î³ÌÉè¼ÆµÄ»ú»á£¬²»½öÈÃÎÒÃǸü¼Óѧ»áÁËMATLABµÄÇ¿´óͼÐδ¦Àí·½·¨£¬ÕÆÎÕÁËMATLABµÄ±à³Ì¼¼Êõ£¬¶øÇÒÒ²¶ÍÁ¶ÁËÎÒÃǵ͝ÊÖÄÜÁ¦¡£Í¨¹ýÕâ´Î¿ÎÉèÈÃÎÒÃ÷°×ÁËÀíÂÛÁªÏµÊµ¼ùµÄÖØÒªÐÔ£¬Êé±¾ÉϵÄÀíÂÛ֪ʶѧÁ˲»ÉÙ£¬ÎÒÃDZØÐëµÃÓ¦Óõ½Êµ¼ùµ±ÖУ¬×öµ½Ñ§ÒÔÖÂÓã¬ÕâÑùÎÒÃDzÅÄÜÓв»¶ÏµÄ´´Ð¡£Õâ´Î¿Î³ÌÉè¼ÆÒ²¸Ðлָµ¼ÀÏʦÔÚÉè¼Æ¹ý³ÌÖеĸ¨µ¼ÒÔ¼°Í¬Ñ§ÃǵİïÖú¡£Ã»ÓÐËûÃǵİïÖúÎÒ²»»áÄÇô¿ì¿Ë·þÄÇЩÀ§ÄÑ£¬Ò²²»»áÕâô¿ìѧµ½Õâô¶àµÄ֪ʶ¡£

25

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

²Î¿¼ÎÄÏ×

[1] ³Â»³è¡£¬Îâ´óÕý£¬¸ßÎ÷È«.MATLAB¼°ÔÚµç×ÓÐÅÏ¢¿Î³ÌÖеÄÓ¦ÓÃ[Z]. ±±¾©£ºµç×Ó¹¤Òµ

³ö°æÉ磬2005

[2] ÁõȪ£¬½­Ñ©Ã·.ÐźÅÓëϵͳ[Z]. ±±¾©£º¸ßµÈ½ÌÓý³ö°æÉ磬2006

[3] ÁõȪ£¬ãÚ´ó˳£¬¹ù־ǿ.Êý×ÖÐźŴ¦ÀíÔ­ÀíÓëʵÏÖ[Z]. ±±¾©£ºµç×Ó¹¤Òµ³ö°æÉ磬2009 [4] Áººç. ÐźÅÓëϵͳ·ÖÎö¼°MATLABʵÏÖ[Z]. ±±¾©£ºµç×Ó¹¤Òµ³ö°æÉ磬2002 [5] ÂÞ½¨¾ü. MATLAB½Ì³Ì[Z]. ±±¾©£ºµç×Ó¹¤Òµ³ö°æÉ磬2005

[6] Ê©Ñô. MATLABÓïÑÔ¹¤¾ßÏä--ToolBoxʵÓÃÖ¸ÄÏ. Î÷°²£ºÎ÷±±¹¤Òµ´óѧ³ö°æÉ磬1999 [7] µË΢.MATLABº¯ÊýËÙ²éÊÖ²á. ±±¾©£ºÈËÃñÓʵç³ö°æÉ磬2010

26

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

¸½Â¼

½×Ô¾ÐźŠclc;

t=-0.5:0.001:1; t0=0;

u=stepfun(t,t0); plot(t,u);

axis([-0.5 1 -0.2 1.2]) ³å¼¤ÐźŠclc; t = -3:0.01:3; y = (t==0); plot(t,y); ÕýÏÒÐźŠclc;

t=-0.5:0.001:1; A=3; f=5; fai=1;

u=A*sin(2*pi*f*t+fai); plot(t,u)

axis([-0.5 1 -3.2 3.2])

ʵָÊýÐźŠclc;

27

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

t=0:0.002:3; A=3; a=0.5; u=A*exp(a*t); plot(t,u)

axis([-0.2 3.1 -0.2 14])

ÐéÖ¸ÊýÐźŠclc; t=0:0.001:15; a=2; w=pi/4; z=a*exp(i*w*t);

subplot(2,2,1),plot(t,real(z)),axis([0, 15,-2.5,2.5]),title('ʵ²¿') subplot(2,2,3),plot(t,imag(z)),axis([0,15,-2.5,2.5]),title('Ð鲿') subplot(2,2,2),plot(t,abs(z)),axis([0,15,1.5,2.5]),title('Ä£') subplot(2,2,4),plot(t,angle(z)),axis([0,15,-4,4]),title('Ïà½Ç')

¸´Ö¸ÊýÐźŠclc; t=0:0.01:3; a=-1; A=1£» b=10;

z=A*exp((a+i*b)*t);

subplot(2,2,1),plot(t,real(z)),title('ʵ²¿') subplot(2,2,3),plot(t,imag(z)),title('Ð鲿') subplot(2,2,2),plot(t,abs(z)),title('Ä£') subplot(2,2,4),plot(t,angle(z)),title('Ïà½Ç')

28

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

Ïà¼Ó clc;

t=-0.5:0.0001:2.5; t0=1;

u=stepfun(t,t0); y=sin(2*pi*t); f=y+u; plot(t,f)

axis([-0.5 2.5 -1.5 2.5]) Ïà³Ë clc; t=0:0.0001:3; t0=1;

u=stepfun(t,t0); y=sin(2*pi*t); f=u.*y; plot(t,f);

axis([0 3 -1.5 1.5]); Êý³Ë clc; t=0:0.0001:3; a=2; t0=1;

u=stepfun(t,t0); f=a*u; plot(t,f);

29

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

axis([0 3 0 2.5]); ΢·Ö clc; t=-1:0.02:1; g=t.*t; d=diff(g); subplot(211); plot(t,g,'-'); subplot(212); plot(d,'-'); »ý·Ö clc; t=-1:0.2:1; syms t; f=t*t; g=int(f); subplot(211); ezplot(f); subplot(212); ezplot(g); ·´×ª clc; t=-1:0.2:1; f=t; g=fliplr(f); h=flipud(f);

30

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

subplot(311); plot(t,f); axis([-1 1 -1 1]); title('Ô­º¯Êý'); subplot(312); plot(t,g); axis([-1 1 -1 1]); title('×óÓÒ·´×ª'); subplot(313); plot(t,h); axis([-1 1 -1 1]); title('ÉÏÏ·´×ª'); Ê±ÒÆ clc; t=0:0.0001:2; y=sin(2*pi*t); y1=sin(2*pi*(t-0.2)); plot(t,y,'-',t,y1); axis([0 2 -1.5 1.5]); Õ¹Ëõ clc; t=0:0.0001:2; a=2; y=sin(2*pi*t); y1=subs(y,t,a*t); subplot(211); ezplot(y);

31

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

subplot(212); ezplot(y1); µ¹Ïà clc; t=0:0.0001:2; y=sin(2*pi*t); y1=-y; subplot(211); plot(t,y);

axis([0 2 -1.5 1.5]); subplot(212); plot(t,y1); axis([0 2 -1.5 1.5]); ×ۺϱ仯 clc£» syms t;

f=sym('sin(t)/t'); %¶¨Òå·ûºÅº¯Êýf(t)=sin(t)/t f1=subs(f,t,t+3); %¶Ôf½øÐÐÒÆÎ» f2=subs(f1,t,2*t); %¶Ôf1½øÐг߶ȱ任 f3=subs(f2,t,-t); %¶Ôf2½øÐз´ñÞ subplot(2,2,1);ezplot(f,[-8,8]);grid on; subplot(2,2,2);ezplot(f1,[-8,8]);grid on; subplot(2,2,3);ezplot(f2,[-8,8]);grid on; subplot(2,2,4);ezplot(f3,[-8,8]);grid on;

½»Ö±Á÷·Ö½â

clc;

32

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

t=-1:0.001:1; f=sin(2*pi*t)+2; g=mean(f); h=f-g; subplot(311); plot(t,f);

axis([-1 1 0.5 3.5]); subplot(312); plot(t,g);

axis([-1 1 1.5 2.5]); subplot(313); plot(t,h);

axis([-1 1 -1.5 1.5]);

ÆæÅ¼·Ö½â

clc; syms t;

f=sym('sin(t- 0.1)+t '); f1=subs(f,t,-t) g=1/2*(f+f1); h=1/2*(f-f1); subplot(311); ezplot(f,[-8,8]); subplot(312); ezplot(g,[-8,8]); subplot(313); ezplot(h,[-8,8]);

¾í»ý

33

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

function [f,k]=sconv(f1,f2,k1,k2,p) %¼ÆËãÁ¬ÐøÐźží»ý»ý·Ö f(t)=f1(t)*f2(t) % f: ¾í»ý»ý·Ö f(t)¶ÔÓ¦µÄ·ÇÁãÑùÖµÏòÁ¿ % k£ºf(t)µÄ¶ÔӦʱ¼äÏòÁ¿ % f1: f1(t)·ÇÁãÑùÖµÏòÁ¿ % f2: f2(t)µÄ·ÇÁãÑùÖµÏòÁ¿ % k1: f1(t)µÄ¶ÔӦʱ¼äÏòÁ¿ % k2: f2(t)µÄ¶ÔӦʱ¼äÏòÁ¿ % p£ºÈ¡Ñùʱ¼ä¼ä¸ô

f=conv(f1,f2); %¼ÆËãÐòÁÐ f1 Óë f2 µÄ¾í»ýºÍ f f=f*p;

k0=k1(1)+k2(1); %¼ÆËãÐòÁÐ f ·ÇÁãÑùÖµµÄÆðµãλÖà k3=length(f1)+length(f2)-2; %¼ÆËã¾í»ýºÍ f µÄ·ÇÁãÑùÖµµÄ¿í¶È

k=k0:p:k3*p; %È·¶¨¾í»ýºÍ f ·ÇÁãÑùÖµµÄʱ¼äÏòÁ¿ subplot(2,2,1)

plot(k1,f1) %ÔÚ×Óͼ 1 »æ f1(t)ʱÓò²¨ÐÎͼ title('f1(t)') xlabel('t') ylabel('f1(t)') subplot(2,2,2)

plot(k2,f2) %ÔÚ×Óͼ 2 »æ f2(t)ʱ²¨ÐÎͼ title('f2(t)') xlabel('t') ylabel('f2(t)') subplot(2,2,3)

plot(k,f); %»­¾í»ý f(t)µÄʱÓò²¨ÐÎ h=get(gca,'position'); h(3)=2.5*h(3);

set(gca,'position',h) %½«µÚÈý¸ö×ÓͼµÄºá×ø±ê·¶Î§À©ÎªÔ­À´µÄ 2.5 ±¶

34

MatlabÓ¦ÓÃʵ¼ù¿Î³ÌÉè¼Æ

title('f(t)=f1(t)*f2(t)') xlabel('t') ylabel('f(t)')

35