第一章 晶体结构
1.试述晶态、非晶态、准晶、多晶和单晶的特征性质。
解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。 2.晶格点阵与实际晶体有何区别和联系?
解:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。晶格点阵与实际晶体结构的关系可总结为:
晶格点阵+基元=实际晶体结构
3.晶体结构可分为Bravais格子和复式格子吗?
解:晶体结构可以分为Bravais格子和复式格子,当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表该原子,这种晶体结构就称为简单格子或Bravais格子;当基元包含2个或2个以上的原子时,各基元中相应的原子组成与格点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。
4.图1.34所示的点阵是布喇菲点阵(格子)吗?为什么?如果是,指明它属于那类布喇菲格子?如果不是,请说明这种复式格子的布喇菲格子属哪类?
(a) (b) (c) (d)
图1.34
(a)“面心+体心”立方;(b)“边心”立方;(c)“边心+体心”立方;(d)面心四方
解:(a)“面心+体心”立方不是布喇菲格子。
从“面心+体心”立方体的任一顶角上的格点看,与它最邻近的有12个格点;从面心任一点看来,与它最邻近的也是12个格点;但是从体心那点来看,与它最邻近的有6个格点,所以顶角、面心的格点与体心的格点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。
(b)“边心”立方不是布喇菲格子。
从“边心”立方体竖直边心任一点来看,与它最邻近的点子有八个;从“边心”立方体水平边心任一点来看,与它最邻近的点子也有八个。虽然两者最邻近的点数相同,距离相等,但他们各自具有不同的排列。竖直边心点的最邻近的点子处于相互平行、横放的两个平面上,而水平边心点的最邻近的点子处于相互平行、竖放的两个平面上,显然这两种点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。
(c)“边心+体心”立方不是布喇菲格子。
从“边心+体心”立方任一顶点来看,与它最邻近的点子有6个;从边心任一点来看,与它最邻近的点子有2个;从体心点来看,与它最邻近的点子有12个。显然这三种点所处的几何环境不同,因而也不是布喇菲格子,而是属于复式格子,此复式格子属于简立方布喇菲格子。 (d)“面心四方”
从“面心四方”任一顶点来看,与它最邻近的点子有4个,次最邻近点子有8个;从“面
1
心四方”任一面心点来看,与它最邻近的点子有4个,次最邻近点子有8个,并且在空间的排列位置与顶点的相同,即所有格点完全等价,因此“面心四方”格子是布喇菲格子,它属于体心四方布喇菲格子。
5.以二维有心长方晶格为例,画出固体物理学原胞、结晶学原胞,并说出它们各自的特点。 解:以下给出了了二维有心长方晶格示意图:
由上图,我们可给出其固体物理学原胞如下图(a)所示,结晶学原胞如下图(b)所示: (a) (b)
从上图(a)和(b)可以看出,在固体物理学原胞中,只能在顶点上存在结点,而在结晶学原胞中,既可在顶点上存在结点,也可在面心位置上存在结点。
6.倒格子的实际意义是什么?一种晶体的正格矢和相应的倒格矢是否有一一对应的关系?
解:倒格子的实际意义是由倒格子组成的空间实际上是状态空间(波矢K空间),在晶体的X射线衍射照片上的斑点实际上就是倒格子所对应的点子。
设一种晶体的正格基矢为a1、a2、a3,根据倒格子基矢的定义:
式中?是晶格原胞的体积,即??a1?[a2?a3],由此可以唯一地确定相应的倒格子空间。同样,反过来由倒格矢也可唯一地确定正格矢。所以一种晶体的正格矢和相应的倒格矢有一一对应的关系。 7.为什么说晶面指数(
h1h2h3)和Miller指数(hkl)都能反映一个平行晶面族的方向?
解:晶面指数(h1h2h3)是以固体物理学原胞的基矢a1、a2、a3为坐标轴来表示面指数的,而Miller指数(hkl)是以结晶学原胞的基矢a、b、c为坐标轴来表示面指数的,但它们都是以平行晶面族在坐标轴上的截距的倒数来表示的,而这三个截距的倒数之比就等于晶面族的法线与三个基矢的夹角余弦之比,从而反映了一个平行晶面族的方向。 8.试画出体心立方、面心立方的(100),(110)和(111)面上的格点分布。 解:体心立方(100),(110)和(111)面上的格点分布为:
体心立方(100)面 体心立方(110)面 体心立方(111)面
面心立方(100),(110)和(111)面上的格点分布为:
面心立方(100)面 面心立方(110)面 面心立方(111)面
9.一个物体或体系的对称性高低如何判断?有何物理意义?一个正八面体(见图1.35)有哪些对称操作?
解:对于一个物体或体系,我们首先必须对其经过测角和投影以后,才可对它的对称规律,进行分析研究。如果一个物体或体系含有的对称操作元素越多,则其对称性越高;反之,含有的对称操作元素越少,则其对称性越低。
晶体的许多宏观物理性质都与物体的对称性有关,例如六角对称的晶体有双折射现象。
而立方晶体,从光学性质来讲,是各向同性的。
正八面体中有3个4度轴,其中任意2个位于同一个面内,而另一个则垂直于这个面;6个2度轴;6个与2度轴垂直的对称面;3个与4度轴垂直的对称面及一个对称中心。
10.各类晶体的配位数(最近邻原子数)是多少?
解:7种典型的晶体结构的配位数如下表1.1所示:
晶体结构
配位数
晶体结构
配位数
2
面心立方 六角密积 体心立方 简立方
12 8 6
氯化钠型结构 氯化铯型结构 金刚石型结构
6 8 4
11.利用刚球密堆模型,求证球可能占据的最大体积与总体积之比为
?2?3?(1)简单立方6;(2)体心立方8;(3)面心立方6
2?3?(4)六角密积6;(5)金刚石16。
解:(1)在简立方的结晶学原胞中,设原子半径为R,则原胞的晶体学常数a?2R,则简立方的致密度(即球可能占据的最大体积与总体积之比)为:
(2)在体心立方的结晶学原胞中,设原子半径为R,则原胞的晶体学常数a?4R/3,则体心立方的致密度为:
(3)在面心立方的结晶学原胞中,设原子半径为R,则原胞的晶体学常数a?22R,则面心立方的致密度为:
(4)在六角密积的结晶学原胞中,设原子半径为R,则原胞的晶体学常数a?2R,
c?(26/3)a?(46/3)R,则六角密积的致密度为:
(5)在金刚石的结晶学原胞中,设原子半径为R,则原胞的晶体学常数a?(8/3)R,则金刚石的致密度为:
12.试证明体心立方格子和面心立方格子互为正倒格子。
解:我们知体心立方格子的基矢为:
根据倒格子基矢的定义,我们很容易可求出体心立方格子的倒格子基矢为:
由此可知,体心立方格子的倒格子为一面心立方格子。同理可得出面心立方格子的倒格子为一体心立方格子,所以体心立方格子和面心立方格子互为正倒格子。 13. 对于六角密积结构,固体物理学原胞基矢为 试求倒格子基矢。
解:根据倒格子基矢的定义可知:
?2?3acaci?j22=2?(i?2j)
a323ac23acaci?j22=2?(?i?2j)
a323ac2??2?3
32ak2?2k ?2?=c32ac214. 一晶体原胞基矢大小a?4?10?10m,b?6?10?10m,c?8?10?10m,基矢间夹角
??90?,??90?,??120?。试求:
(1) 倒格子基矢的大小; (2) 正、倒格子原胞的体积;
(3) 正格子(210)晶面族的面间距。 解:(1) 由题意可知,该晶体的原胞基矢为:
由此可知:
b1?2?a2?a3=2?a1?[a2?a3]bc(31i?j)22=2?(i?1j)
a33abc2=
b2?2?a3?a1=2?a1?[a2?a3]acj3abc22?2?j b33ka1?a22=2??k b3?2?=2?ca1?[a2?a3]3abc2ab 所以
b1=
4?2?1?1.8138?1010m?1 ?12?()2=
a3a34?2?2?1.2092?1010m?1 ?()2=
b3b32?2??12=?0.7854?1010m?1 ccb2=b3=
(2) 正格子原胞的体积为:
133j)?(ck)]=abc?1.6628?10?28m3 ??a1?[a2?a3]=(ai)?[b(?i?222倒格子原胞的体积为:
2?12?22?16?3(i?j)?[(j)?(k)]=?1.4918?1030m?3 ??b1?[b2?b3]=abc333abc?4