µ¥Î»´úÂ룺10226 ѧºÅ£º2009156007
±¾¿Æ±ÏÒµÂÛÎÄ
Ìâ
Ä¿ »ùÒòоƬÊý¾ÝÜöÝÍ¡ª½ºÖÊÁöÔ¤ºó·ÖÎö
ËùÔÚѧԺ ÉúÎïÐÅÏ¢¿ÆÑ§Óë¼¼ÊõѧԺ ר
Òµ ÉúÎï¼¼Êõ
ѧÉúÐÕÃû ÇØÔ¶ Ö¸µ¼½Ìʦ ÕÅÉܾü
¶þ¡ðÒ»ËÄÄêÁùÔÂ
¹þ¶û±õÒ½¿Æ´óѧ±¾¿Æ±ÏÒµÂÛÎÄ
¹þ¶û±õÒ½¿Æ´óѧ±¾¿Æ±ÏÒµÂÛÎÄÉùÃ÷
±¾ÈËÖ£ÖØÉùÃ÷£º Ëù³Ê½»µÄ±ÏÒµÂÛÎÄ£¬ÊDZ¾ÈËÔÚÖ¸µ¼½ÌʦµÄÖ¸µ¼Ï½øÐÐÑо¿¹¤×÷ËùÈ¡µÃµÄ³É¹û£¬ÊµÑéÊý¾ÝÓë½á¹ûÕæÊµ¿É¿¿¡£³ýÎÄÖÐÒѾעÃ÷ÒýÓõÄÄÚÈÝÍ⣬±¾ÎIJ»º¬ÈÎºÎÆäËû¸öÈË»ò¼¯ÌåÒѾ·¢±í»ò׫д¹ýµÄÑо¿³É¹û¡£¶Ô±¾ÎÄÑо¿×ö³öÖØÒª¹±Ï׵ĸöÈ˺ͼ¯Ì壬¾ùÒÑÔÚÎÄÖÐÒÔÃ÷È··½Ê½±êÃ÷¡£±¾ÉùÃ÷µÄ·¨Âɽá¹ûÓɱ¾È˳е£¡£
ÂÛÎÄ×÷ÕßÇ©Ãû£º
ÈÕ ÆÚ£º Äê Ô ÈÕ
¹þ¶û±õÒ½¿Æ´óѧ±¾¿Æ±ÏÒµÂÛÎİæÈ¨Ê¹ÓÃÊÚȨ˵Ã÷
±¾ÈËÍêÈ«Á˽âѧУ¹ØÓÚÊÕ¼¯¡¢±£´æºÍʹÓñ¾¿Æ±ÏÒµÂÛÎĵĹ涨£¬¼´£º 1¡¢°´ÕÕѧУҪÇóÌá½»±¾¿Æ±ÏÒµÂÛÎĵÄÓ¡Ë¢±¾ºÍµç×Ó°æ±¾£»
2¡¢Ñ§Ð£ÓÐȨ±£´æ±¾¿Æ±ÏÒµÂÛÎÄÂÛÎĵÄÓ¡Ë¢±¾ºÍµç×Ӱ棬¿ÉÒÔ½«±¾ÂÛÎĵÄÈ«²¿»ò²¿·ÖÄÚÈݱàÈëÓйØÊý¾Ý¿â½øÐмìË÷£¬²¢ÌṩĿ¼¼ìË÷¡¢½èÔļ°²éÔÄ·þÎñ£»
3¡¢Ñ§Ð£¿ÉÒÔ²ÉÓÃÓ°Ó¡¡¢ËõÓ¡¡¢Êý×Ö»¯»òÆäËü¸´ÖÆÊֶα£´æÂÛÎÄ£» 4¡¢±¾¿Æ±ÏÒµÂÛÎÄÑо¿³É¹ûµÄÔðÈÎ×÷Õß»òͨѶ×÷ÕßΪ±¾È˵ÄÖ¸µ¼½Ìʦ£¬×÷ÕßÊðÃûµ¥Î»Îª¹þ¶û±õÒ½¿Æ´óѧ£»
5¡¢±£ÃܵÄÂÛÎÄÔÚ½âÃܺó×ñÊØ´Ë¹æ¶¨¡£
ÂÛÎÄ×÷ÕßÇ©Ãû£º Ö¸µ¼½ÌʦǩÃû£º
ÈÕ ÆÚ£º Äê ÔÂ
¹þ¶û±õÒ½¿Æ´óѧ±¾¿Æ±ÏÒµÂÛÎÄ
Ŀ ¼
ÖÐÎÄÕªÒª........................................................................................................................................... 1 Abstract ............................................................................................................................................ 2 1¡¢ÎÄÏ××ÛÊö..................................................................................................................................... 4
1.1 ½ºÖÊÁö ............................................................................................................................... 4 1.2 Ïà¹ØÊý¾Ý¿â¼ò½é ............................................................................................................... 4
1.2.1 GEOÊý¾Ý¿â ............................................................................................................ 4 1.2.2 KEGGÊý¾Ý¿â .......................................................................................................... 5 1.3 ÁÙ´²Ô¤ºó¼ò½é ................................................................................................................... 5
1.3.1 Éú´æ·ÖÎö¼ò½é ....................................................................................................... 6 1.4 Ŀǰ¹úÄÚÍâÑо¿ÏÖ×´ ....................................................................................................... 6 1.5 ¿ÎÌâÑо¿Ä¿µÄ¼°ÒâÒå ....................................................................................................... 6 2¡¢²ÄÁÏÓë·½·¨................................................................................................................................. 8
2.1 ʵÑéÊý¾Ý ........................................................................................................................... 8
2.1.1 »ñµÃ½ºÖÊÁöоƬ±í´ïÊý¾Ý ................................................................................... 8 2.1.2 ½ºÖÊÁöͨ·Êý¾Ý ................................................................................................... 8 2.2 ʵÑé·½·¨ ........................................................................................................................... 8
2.2.1 ¼¼Êõ·Ïß ............................................................................................................... 8 2.2.2 Êý¾ÝÔ¤´¦Àí ........................................................................................................... 9 2.2.3 ¶àƽ̨»ùÒòоƬÊý¾ÝÕûºÏ ................................................................................... 9 2.2.4 ¼ø¶¨·çÏÕͨ· ..................................................................................................... 10 2.2.5 Éú´æ·ÖÎö ............................................................................................................. 10
3¡¢½á ¹û................................................................................................................................... 12
3.1 ½ºÖÊÁö»ùÒòоƬÕûºÏÊý¾Ý ............................................................................................. 12 3.2 ½ºÖÊÁöµÄKEGGͨ·ͼ ................................................................................................... 12 3.3 meta·ÖÎö ........................................................................................................................ 14 3.4 Éú´æ·ÖÎö ......................................................................................................................... 14 4¡¢ÌÖ ÂÛ................................................................................................................................... 17 5¡¢½á ÂÛ................................................................................................................................... 18 6¡¢Ö л................................................................................................................................... 19 7¡¢²Î¿¼ÎÄÏ×................................................................................................................................... 20
¹þ¶û±õÒ½¿Æ´óѧ±¾¿Æ±ÏÒµÂÛÎÄ
ÖÐÎÄÕªÒª
´óÁ¿µÄ»ùÒò×éÊý¾ÝÌØ±ðÊÇ΢ÕóÁÐÊý¾Ý¶¼¿ÉÒÔͨ¹ý¸÷ÖÖÍøÂç×ÊÔ´»ñµÃ£¬ÀýÈç´Óthe Gene Expression Omnibus (GEO)ÖлñµÃ¡£ÏÖ´æµÄÕâЩ»ùÒò±í´ïÊý¾Ý¿âµÄÊý¾Ý¿â½Ó¿Ú£¬±í´ïÊý¾Ý´æ´¢·½Ê½ºÍÁÙ´²metaÊý¾Ý×¢Ê͵ȷ½ÃæÔÚ¸ñʽÉ϶¼´æÔÚ²»ÏàÈݵÄÎÊÌ⣬¶øÇÒ´Ó²»Í¬µÄÊý¾Ý¿âµÃµ½µÄÊý¾ÝµÄ×¢ÊÍÒ²»áÓв»Ò»ÖµÄÇé¿ö¡£ÕâЩȱÏݵ¼ÖÂѰÕÒ¼²²¡Ô¤ºó»ùÒòʱ´æÔںܴóµÄÀ§ÄÑ¡£
Ô·¢ÐÔÄÔÖ×ÁöÖÐÔ¤ºóЧ¹û×î²îµÄ¾ÍÊÇÄÔ½ºÖÊÁö,ÆäÔ¤ºóÓëÉúÎïÑ§ÌØÕ÷¡¢Éú³¤·¢Éú²¿Î»¡¢ÊÖÊõ·½Ê½µÈÒ½ÁÆÊÖ¶ÎÓйØ,ÒòΪ½ºÖÊÁö¾ßÓнþÈóÉú³¤µÄÌØÕ÷,¶ÔÉñ¾×éÖ¯ÆÆ»µ½Ï´ó,ÊÖÊõÄÑÒÔÍêÈ«Çгý,¾ø´ó¶àÊý½ºÖÊÁöÔÚÊÖÊõºÍ·Å»¯Áƺ󸴷¢¸ÅÂÊÈԽϴ󡣽ºÖÊÁö·ÖΪ4¸öµÈ¼¶£ºI¡¢II¡¢III¡¢IV¡£µÍµÈ¼¶µÄ½ºÖÊÁöÊǸ߶ȷֻ¯µÄ£¬»¼ÕßÒ²ÍùÍù¾ßÓбȽÏÁ¼ºÃµÄÔ¤ºóЧ¹û£»¸ßµÈ¼¶µÄ½ºÖÊÁöÔòÔ¤ºóЧ¹û½Ï²î¡£
»ùÓÚ´Ë£¬ÀûÓþ¹ýÕûºÏÁ˵ĽºÖÊÁöµÄ»ùÒòоƬ±í´ïÊý¾Ý×÷meta·ÖÎö£¬ÕâЩÊý¾Ý¶¼ÒÔͳһµÄ±ê×¼»¯À´´¦Àí£¬²¢±»Ó³Éäµ½ÁËHGNCµÄgene symbolÉÏ£»¼Ì¶øÀûÓÃRÈí¼þÀ´½øÐÐmeta·ÖÎö£»×îºóÀûÓÃcox±ÈÀý·çÏջعéÄ£ÐÍÀ´Ñ°ÕÒ¼²²¡Ô¤ºóµÄbiomarker¡£
±¾Ñо¿µÄÒ»¸öÖØÒªµÄÓ¦ÓþÍÊÇÀûÓöà¸ö¶ÀÁ¢µÄÑо¿À´¼ìÑé֮ǰ×÷Ϊ¼ÙÉèÌá³öµÄ½ºÖÊÁöµÄÔ¤ºó»ùÒò£¬ÀûÓÃmeta·ÖÎöÄܶÔͬһ¸ö¿ÎÌâµÄ¶àÏîÑо¿½á¹ûµÄÒ»ÖÂÐÔ½øÐйéÄɸÅÀ¨£¬¶Ôͬһ¿ÎÌâµÄ¶àÏîÑо¿½á¹û×÷ϵͳÐÔÆÀ¼ÛºÍ×ܽᣬmeta·ÖÎöÄܹ»Ìá¸ßͳ¼ÆÐ§ÄܺÍЧӦֵ¹À¼ÆµÄ¾«È·¶È¡£
¹Ø¼ü´Ê£ºÉú´æ·ÖÎö£»ÉúÎï±ê¼Ç£»meta·ÖÎö£»Ô¤ºó£»½ºÖÊÁö
1
»ùÒòоƬÊý¾ÝÜöÝÍ¡ª½ºÖÊÁöÔ¤ºó·ÖÎö
Meta-analysis and survival analysis of the gene expression of glioma
Abstract
A wealth of genomic data, in particular microarray data, is publicly available through diverse online resources. Major database of gene chip expression data, e.g. Array Express and the Gene Expression Omnibus (GEO).However, inconsistent formatting among database interfaces, expression data storage and clinical meta-data annotations present formidable obstacles to making efficient use of these resources. The database provides machine-rather than manually annotated data, resulting in reduced consistency of annotation across studies. These defects may cause great problems when we are searching for the disease Biomarker.
Glioma is a primary brain tumor which has the worst prognosis of tumor, its prognosis is related with biological characteristics, growth related parts, operation mode and many other treatment measures, because of glioma with infiltrative growth characteristics, damaging the nervous system , difficult to complete excision operation, the vast majority of glioma after operation and chemotherapy will probably recur . Glioma is divided into 4 grades: I, II, III, IV. Low grade gliomas are highly differentiated, sufferers often have a relatively well prognosis; high grade gliomas
usually have poor prognosis.
Based on that, I utilize 7 sets of data of the expression of the glioma gene chip to do meta-analysis. And gene expression data were collected from public databases and author websites, processed in a consistent manner and mapped uniformly to official Human Gene Nomenclature Committee (HGNC) gene symbols. And then we execute the meta analysis using R software. Finally, using Cox proportional hazards regression model to the prognosis of the disease biomarker.
An important application of my research is the use of multiple independent study to test the hypothesis before as glioma prognosis of biomarker, analysis of consistency can result a number of studies on the same topic was evaluated using meta, the results
2
¹þ¶û±õÒ½¿Æ´óѧ±¾¿Æ±ÏÒµÂÛÎÄ
of several studies on the same topic for system evaluation and summary, meta analysis statistical efficiency and effect value estimation accuracy.
Key words: survival analysis; biomarker; meta-analysis; prognosis; glioma
3
»ùÒòоƬÊý¾ÝÜöÝÍ¡ª½ºÖÊÁöÔ¤ºó·ÖÎö
1¡¢ÎÄÏ××ÛÊö
1.1 ½ºÖÊÁö
½ºÖÊÁö£¨glioma£©ÊÇ·¢Éú·¢Õ¹ÓÚÉñ¾ÍâÅß²ãµÄÖ×Áö£¬¹ÊÓÖ³ÆÉñ¾ÉÏÆ¤Ö×Áö¡£´ó¶àÊýÖ×ÁöÆðÔ´ÓÚ²»Í¬ÀàÐ͵ÄÉñ¾½ºÖÊ£¬µ«°´ÕÕ×éÖ¯·¢ÉúѧÀ´Ô´¼°ÉúÎïÑ§ÌØÐÔµÄÏàËÆ£¬¶Ô·¢ÉúÓÚÉñ¾ÍâÅß²ãµÄ¸÷ÖÖÖ×Áö£¬Ò»°ã¶¼³ÆÎªÉñ¾½ºÖÊÁö¡£²¡Òò¶àÊÇÒòΪ¾ªÏÅ»ò´óÅ£¬»òË¥¿Þ·³ÃÆ£¬Ê¹ÆøÑªÔËÐÐÊÜ×裬µÖ¿¹Á¦Ï½µ£¬²¡Ð°½è´Ë³ËÐé¶øÈ룬·¢Îª°©Áö¡£Ö¢×´Ö÷ÒªÓÐÁ½·½ÃæµÄ±íÏÖ£ºÒ»ÊÇÂÄÚѹÔö¸ßÒÔ¼°Ò»Ð©ÆäËüÖ¢×´£¬ÈçÊÓÁ¦¼õÍË¡¢¸´ÊÓ¡¢Í·Í´¡¢Å»Í¡¢ñ²ðï·¢×÷ºÍ¾«ÉñÖ¢×´µÈ¡£ÁíÒ»ÊÇÄÔ×éÖ¯ÊÜÖ×ÁöµÄѹÆÈ¡¢½þÈó¡¢ÆÆ»µËù²úÉúµÄ¾Ö²¿Ö¢×´£¬Ôì³ÉÉñ¾¹¦ÄÜȱʧ¡£
1.2 Ïà¹ØÊý¾Ý¿â¼ò½é 1.2.1 GEOÊý¾Ý¿â
GEO £¨Gene Expression Omnibus£©Êý¾Ý¿âNCBI£¨National Center for Biotechnology Information£©ÆìϵÄÖ¼ÔÚÖ§³Ö»ùÒò±í´ïÊý¾Ý¹«¹²Ê¹ÓúÍÉ¢²¼À´×Ômicroarray£¬ÔÓ½»Ä¤£¨hybridization membrane £©£¬¸ßÃܶȵĹѺËÜÕËá΢ÕóÁУ¨HAD£©ÒÔ¼°SAGEµÈºÜ¶àÆäËüÀàÐ͵ĻùÒò±í´ïÊý¾Ý¶¼±»ÄÉÈ룬µÇ¼ÇºÍ´æµµ¡£GEOÊý¾Ý¿âÊǸßͨÁ¿µÄ»ùÒò±í´ïÊý¾Ý¿â£¬Êý¾Ý¿âÀïÃæ°üº¬¸ßͨÁ¿ÊµÑéÊý¾ÝµÄ¸÷ÖÖ·ÖÀ࣬ÓÐÒÔµ¥,˫ͨµÀ΢ÕóÁÐΪ»ù´¡£¬¶ÔmRNA·á¶ÈµÄ½øÐвⶨ£»µ°°×ÖÊ·Ö×ӺͻùÒò×éDNAµÄʵÑéÊý¾Ý£¬Æù½ñΪֹ£¬GEOÊý¾Ý¿â°üÀ¨µÄÊý¾ÝÒѾº¸ÇÁË10000¸öÀ´×ÔÔÓ½»ÊµÑéÒÔ¼°30¶àÖÖ²»Í¬ÉúÎï¸öÌåµÄSAGE¿â¡£
GEOÊý¾Ý¿â°üº¬Ëĸö»ù±¾ÊµÌ壺Ìá½»Õߣ¨submitter£©£¬Æ½Ì¨£¨platform£©£¬ÏµÁУ¨series£©ºÍÑù±¾£¨sample£©£¬ÕâËĸöʵÌå¶¼¿ÉÒÔ±£´æµ½¶ÀÁ¢µÄÏà¹ØÊý¾Ý¿â
4
¹þ¶û±õÒ½¿Æ´óѧ±¾¿Æ±ÏÒµÂÛÎÄ
ÖУ¬»ñµÃºÅǰÈý¸ö×Öĸ·Ö±ðΪ¡°GPL¡±¡±GSM¡±¡±GSE¡±¡£ÕâÈý¸ö¶¼ÊÇ¿¿Ìá½»Õßά»¤µÄ£»ÁíÍâGEOÊý¾Ý¿âÉÐÓÐÒ»¸ö×÷Ϊ¸¨ÖúµÄÊý¾Ý·ÖÎö¹¤¾ß£¬ËûÄܹ»°ÑÌá½»ÕßËùÌá½»µÄÑù±¾×ÛºÏÕûÀíµ½GEOÊý¾Ý¼¯×飨GEO DataSets£¬ËõдΪGDS£©£¬GDSÊý¾ÝÊÇÓÉGEO×ÔÉíά»¤µÄ£¬GDSÊý¾Ý±ÈGSEÊý¾Ý¸ü±ê×¼£¬²¢ÇÒÊý¾Ý¾ßÓÐÉúÎïѧÒâÒåÇÒÔÚͳ¼ÆÑ§ÉÏÄܹ»Ï໥±È½Ï¡£
1.2.2 KEGGÊý¾Ý¿â
KEGG£¨Kyoto Encyclopedia of Genes and Genomes£©ÊÇÒ»¸öÈ˹¤ÊÕ¼¯µÄ¹ØÓÚ»ùÒò×飨genomes£©¡¢ÉúÎïͨ·£¨biological pathways£©¡¢¼²²¡£¨diseases£©¡¢Ò©Îdrugs£©ºÍ»¯Ñ§ÎïÖÊ£¨ chemical substance£©µÄÊý¾Ý¿â¡£ KEGGÒ»°ãÓÃÓÚÉúÎïÐÅϢѧÑо¿ºÍ½ÌÓýÓÃ;¡£KEGGÏîÄ¿Æô¶¯ÓÚ 2005Ä꣬µ±Ê±ÔÚÈËÀà»ùÒò×鼯»®Öй¤×÷µÄÈÕ±¾¾©¶¼´óѧ»¯¹¤Ñо¿Ëù£¨Institute for Chemical Research, Kyoto University£©µÄMinoru Kanehisa½ÌÊÚÒâʶµ½ÏÖÔÚÐèÒªÒ»ÖÖÄܹ»°ïÖúÈËÀà½âÊÍ»ùÒò×éÐòÁÐÊý¾ÝµÄ¼ÆËã»ú×ÊÔ´£¬ÓÚÊÇËû¾Í¿ªÊ¼ºÍÉè¼ÆÁËKEGGͨ·Êý¾Ý¿â£¬µ±Ê±µÄ KEGG»¹Ö»Äܹ»ÎªÏ¸°ûºÍÉúÎïÌåµÄ´úл»æÖưüº¬·Ö×Ó»¥×÷ºÍ·Ö×ÓÖ®¼äµÄ»¯Ñ§·´Ó¦µÄͨ·ͼ£¬Éè¼ÆµÄ³õÖÔÊǽ«Ò»¸öͨ·ÄڵĻùÒòºÍ»ùÒò²úÎÖ÷ÒªÊǵ°°×ÖÊ£©Á¬½ÓÆðÀ´¡£µ«ÊÇÈ´Ö±½Ó²úÉúÁËÒ»ÖÖ½Ð×ö KEGG pathway mappingµÄ·ÖÎö£¬ÕâÀà·ÖÎöͨ¹ý¶Ô±È»ùÒòµÄÐòÁÐÓë KEGG PATHWAYÊý¾Ý¿â×ö±È½ÏÀ´×¢Ê͸öÎÐòÁеŦÓá£Óà KEGGÊý¾Ý¿âµÄ¿ª·¢ÕßÀ´Ëµ¡° KEGGÊǼÆËã»ú»¯µÄÉúÎïϵͳ¡±£¬ËüÄܽ«Í¼ºÍ¿éÒ»ÆðÀ´¹¹³ÉÒ»¸öÉúÎïϵͳ¡£¾ßÌåµÄ˵ÒÅ´«Ñ§ÉϵĿéÊÇ»ùÒòºÍµ°°×ÖÊ£¬»¯Ñ§µÄ¿éÊÇС·Ö×Ó£¬ÖÁÓÚͼÔòÊÇÕâЩ¿éÖ®¼äµÄ»¥×÷ÐγɵÄÍøÂç¡£ÕâÖÖ¹ÛÄîÖ±µ½ÏÖÔÚÒ²ÔÚÓ°Ïì KEGGËùÓеÄÊý¾Ý¿â£ºÏµÍ³¡¢»ùÒò×é¡¢»¯Ñ§ºÍ½¡¿µÐÅÏ¢¡£
1.3 ÁÙ´²Ô¤ºó¼ò½é
Ô¤ºóÊÇָƾ¾Ý¾ÑéÔ¤²â³ö¼²²¡µÄ¿ÉÄܲ¡³ÌºÍ×îÖÕ½á¾Ö¡£Ëü¼È°üº¬Åжϼ²²¡µÄijÖÖÌØ¶¨½á¹û£¨ÀýÈ粡Óú£¬¸´·¢ÒÔ¼°ËÀÍöµÈ£©£¬Ò²°üº¬ÁËʱ¼äÒòËØ£¨ÀýÈçÔ¤²âÌØ
5
»ùÒòоƬÊý¾ÝÜöÝÍ¡ª½ºÖÊÁöÔ¤ºó·ÖÎö
¶¨Ê±¼äÄڵijöÏÖijÖÖ½á¾ÖµÄ¿ÉÄÜÐԵĴóСµÈ£©¡£
1.3.1 Éú´æ·ÖÎö¼ò½é
Éú´æ·ÖÎöÊǽ«Ê¼þµÄ½á¹ûÒÔ¼°³öÏָýá¹ûËùÒª¾ÀúµÄʱ¼äÁªºÏÆðÀ´·ÖÎöµÄÒ»ÖÖͳ¼Æ·ÖÎö·½·¨¡£ÓÉÓÚÉú´æ·ÖÎö·½·¨¿ÉÒÔ·ÖÎö°üÀ¨½ØÎ²Êý¾ÝµÄʼþ£¬Òò´Ë¸ü³ä·ÖµÄÀûÓÃÁËÐÅÏ¢¡£Cox ±ÈÀý·çÏջعé·ÖÎöÊÇÉú´æ·ÖÎöÖеÄÒ»ÖÖ°ë²ÎÊý·ÖÎö·½·¨£¬Í¬Ê±Ò²ÊÇÒ»ÖÖ¶àÒòËØ·ÖÎö·½·¨£¬Ëü¿ÉÒÔͬʱ·ÖÎö¶à¸ö¶ÀÁ¢ÒòËØ¶ÔÉú´æÊ±¼äµÄÓ°Ïì¡£
1.4 Ŀǰ¹úÄÚÍâÑо¿ÏÖ×´
ÀûÓ󣹿µÄÖÎÁÆ·½·¨À´ÖÎÁƶñÐÔ½ºÖÊÁöµÄЧ¹û»¹±È½Ï²î,¶ø½ü¼¸ÄêÔÚ½ºÖÊÁöµÄ»ùÒòÖÎÁÆ·½ÃæÑо¿»ñµÃÁËÒ»¶¨½øÕ¹,µ±½ñ½ºÖÊÁö»ùÒòÖÎÁƵķÖ×ÓÊÖ¶ÎÖ÷Òª°üº¬µ÷½Úϸ°ûÖÜÆÚ·¨1¡¢×Ôɱ»ùÒòÁÆ·¨2¡¢ÃâÒß»ùÒòÁÆ·¨¡¢¿¹Ñª¹ÜÉú³ÉµÄÖÎÁÆ·¨¡¢PKR;¾¶µÈ,»ùÒòתÔËÌåϵ°üº¬Äæ×ªÂ¼²¡¶¾¡¢ÏÙ²¡¶¾¡¢ÏÙÏà¹Ø²¡¶¾µÈ²¡¶¾ÔØÌå,¶Ô²¡¶¾µÄ¸ÄÔìÔòÖ÷ÒªÊÇͨ¹ýÔö¼ÓÔØÌåµÄ°ÐÏòÐԺͿɿØÐÔ4,´ËÍ⻹ÓÐÒ»ÖÖÐÂÐÍÔØÌåÊÇÈÜÁö²¡¶¾ºÍ·Ç²¡¶¾ÔØÌå5,¶øÄ¿Ç°ÖÎÁÆÐ§¹û×îºÃµÄÊǽáºÏ»ùÒòÖÎÁÆÓ봫ͳ»¯ÁÆ¡¢·ÅÁÆ¡£
Ëæ×Å»ùÒò×é²âÐòÊý¾ÝµÄ¿ìËÙÔö³¤£¬²úÉúÁË´óÁ¿µÄÉúÎïÊý¾Ý£¬Í¬Ê±ÕâЩÊý¾ÝÒ²Òþ²ØÁ˺ܶàµÄÉúÎïѧ֪ʶ£¬ÀûÓÃÉúÎïÐÅϢѧ¿ÉÒÔ¶ÔÕâЩÊý¾Ý½øÐзÖÎö£¬´¦ÀíµÈ£¬¿ÉÒÔÍÚ¿ªÕâЩÉúÎïÊý¾ÝµÄÄÚº£¬½ø¶øÖ¸µ¼ÁÙ´²¶Ô½ºÖÊÁöµÄÖÎÁÆ£¬Ô¤ºó¡£
1.5 ¿ÎÌâÑо¿Ä¿µÄ¼°ÒâÒå
Ëæ×Å´óÁ¿µÄ¸ßͨÁ¿±í´ïÊý¾ÝµÄѸÃÍ·¢Õ¹£¬³öÏÖÁËÔ½À´Ô½¶àµÄ»ùÒò±í´ïÊý¾Ý¿â£¬ÎÒÃÇÓ¦¸Ã³ä·ÖÀûÓÃÕâЩÊý¾ÝÀ´ÍÚ¾ò³öÒþ²ØÔÚÀïÃæµÄÐÅÏ¢¡£ÎÒ²éÔÄÁË´óÁ¿µÄÎÄÏײ¢ÔÚGEOºÍArrayExpressÉÏÏÂÔØÁË´óÁ¿µÄÊý¾Ý£¬ÌÞ³ý²»·ûºÏÑо¿Ìõ¼þµÄÊý¾Ý£¬¹²±£ÁôÁË7Ì×½ºÖÊÁöµÄоƬÊý¾Ý6¡£Í¨¹ýÀûÓÃmeta·ÖÎöÀ´¶ÔÕâЩ¶À
3
6
¹þ¶û±õÒ½¿Æ´óѧ±¾¿Æ±ÏÒµÂÛÎÄ
Á¢Ñо¿µÄ½á¹û½øÐлã×Ü×ۺϣ¬²¢°Ñ»ùÒòоƬ±í´ïÊý¾ÝͬÉúÎïͨ·½áºÏÆðÀ´£¬À´²éÕÒ½ºÖÊÁöµÄ·çÏÕͨ·£¬²¢Ê¹Óõ¥±äÁ¿µÄCox±ÈÀý·çÏջعé·ÖÎö¸ù¾Ý½ºÖÊÁö²¡È˵ÄÉú´æÐÅÏ¢À´Ñ°ÕÒ½ºÖÊÁöµÄÔ¤ºó»ùÒò£¬½ø¶øÌá¸ßÔ¤ºó׼ȷÂÊ£¬¿ÉÒÔΪÁÙ´²ÉÏÌṩһ¸öÖ¸µ¼Òâ¼û£¬¸¨Öú½ºÖÊÁöÁÙ´²Õï¶ÏÓëÖÎÁÆ¡£
7
»ùÒòоƬÊý¾ÝÜöÝÍ¡ª½ºÖÊÁöÔ¤ºó·ÖÎö
2¡¢²ÄÁÏÓë·½·¨
2.1 ʵÑéÊý¾Ý
2.1.1 »ñµÃ½ºÖÊÁöоƬ±í´ïÊý¾Ý
±¾¿ÎÌâÒÔ½ºÖÊÁöΪÑо¿¶ÔÏó¡£¼ìË÷ʱ¼ä½ØÖÁ2013Äê11Ô¡£Êý¾ÝÖ÷ÒªÀ´×ÔÓÚ»ùÒò±í´ï¹«¹²Êý¾Ý¿â£ºGEO¡£¼ìË÷²ßÂÔÊÇÔÚPubMedºÍGEOµÈÊý¾Ý¿â¼ìË÷·ûºÏÄÉÈë±ê×¼µÄÏà¹ØÑо¿ÎÄÏ׺ÍÊý¾Ý£¬ËùÓõĹؼü´ÊÊÇ¡°glioma¡±AND¡°microarray¡±¡°survival¡±£¬²¢¾¹ýÊÖ¹¤¼ìË÷£¬ÌÞ³ýÁ˲»°üº¬Éú´æÊ±¼äµÄÊý¾Ý£¬ÒÔ¼°Ã»ÓнØÎ²×´Ì¬µÄÊý¾Ý¾É¾Ñ¡ºóÒ»¹²±£ÁôÁË7Ì×Êý¾Ý£¬GSE±àºÅ·Ö±ðÊÇGSE427-GPL967£¬GSE4271-GPL978£¬GSE4412-GPL969£¬GSE4412-GPL9710£¬GSE4311411£¬GSE4311512£¬GSE4311613£¬GSE4335314£¬GSE43388-GPL57015ºÍGSE43388-GPL1495116£»Ã¿Ò»Ì×Êý¾ÝÀïÃæ¶¼°üº¬Éú´æÊ±¼ä¡£Ñù±¾Á¿×ã¹»´ó¿ÉÒÔʹʵÑé½á¹û¸ü¾ßÓÐͳ¼ÆÑ§ÒâÒå¡£
2.1.2 ½ºÖÊÁöͨ·Êý¾Ý
´ÓKEGG£¨Kyoto Encyclopedia of Genes and Genomes£©Êý¾Ý¿â¿ÉÒԲ鿴µ½½ºÖÊĸϸ°ûÁö£¨glioma£©µÄͨ·ÐÅÏ¢£¬¼ìË÷ʱÊäÈëgliomaºÍsurvival£¬¿ÉÒÔ¿´µ½ÎÒÃÇÏëÒªµÄ×î·ûºÏÎÒÃÇÒªÇóµÄÒ»¸öͨ·map05214¡£ÎªÁË»ñµÃͨ·ÉϵĻùÒò£¬Ê¹ÓÃÁËÒ»¸öÃûΪorg.Hs.eg.db17µÄR°ü£¬Ê¹ÓÃorg.Hs.eg.dbÕâ¸öR°ü¿ÉÒÔÌáÈ¡³ömap05214Õâ¸öͨ·ÉϵĻùÒò¡£
2.2 ʵÑé·½·¨ 2.2.1 ¼¼Êõ·Ïß
ÎÒÃDzÉÓÃɸѡ³öÀ´µÄ7Ì×оƬÊý¾Ý½øÐÐÊý¾ÝÔ¤´¦Àí£¬²¢ÀûÓÃGEOÊý¾Ý¿âÕÒµ½ÁËоƬÊý¾ÝÉÏ̽ÕëID¶ÔÓ¦µÄ»ùÒòSYMBOL£¬½ø¶øµÃµ½»ùÒòºÍÑù±¾µÄ¶Ô
8
¹þ¶û±õÒ½¿Æ´óѧ±¾¿Æ±ÏÒµÂÛÎÄ
Ó¦¹ØÏµ¡£È»ºóÀûÓñàдµÄR³ÌÐòÈ¡Õâ7Ì×оƬÊý¾ÝÖй²ÓеĻùÒòSYMBOL£¬Ò»¹²ÌáÈ¡³ö4275¸ö¹²ÓлùÒò¡£×îÖյõ½µÄ7¸öÎļþ£¬ÆäÖÐÿ¸öÎļþµÄÿһÐÐÊÇÒ»¸ö»ùÒò£¬Ã¿Ò»ÁÐÊÇÒ»¸öÑù±¾£¬¾ØÕóÊýÖµ±íʾ¸Ã»ùÒòÔÚ¸ÃÑù±¾Öеıí´ïÖµ£»È»ºóÌáÈ¡³ö±í´ïÊý¾ÝÖеÄÉú´æÊ±¼ä£¨survival time£©µÄÊý¾ÝºÍ½ØÎ²×´Ì¬£¨censor status£©µÄÊý¾Ý£¬½ø¶øÀûÓÃÉú´æ·ÖÎö·½·¨Öеİë²ÎÊý·½·¨cox±ÈÀý·çÏջعé·ÖÎöÀ´¶ÔÉú´æÊý¾ÝºÍ±í´ïÊý¾Ý×öÉú´æ·ÖÎö£¬´Ë²½·Ö±ð×öÁËÈ«Ì×Êý¾ÝµÄÉú´æ·ÖÎöºÍÑù±¾Á¿³ä·ÖµÄµ¥Ì×Êý¾ÝµÄÉú´æ·ÖÎö¡£
2.2.2 Êý¾ÝÔ¤´¦Àí
ÏÂÔØµÄ»ùÒòоƬ±í´ïÊý¾ÝÀïÃæÐÐÊÇ̽ÕëID£¬ÁÐÊÇÑù±¾µÄGSM±àºÅ£¬ÎÒÃÇÒª¸ù¾ÝGEOÊý¾Ý¿âÀïÃæµÄƽ̨עÊÍÐÅÏ¢½«Ì½ÕëID¶ÔÓ¦µÄgene symbolÕÒµ½£¬²¢½ø¶øµÃµ½ÐÐÊÇgene symbol£¬ÁÐÊÇÑù±¾GSM±àºÅµÄÎļþ¡£·¢ÏÖÎļþÀïµÄ±í´ïÖµ²î±ðºÜ´ó£¬Ð¡µÄÊýÖµÊǼ¸Ê®£¬´óµÄ´ïµ½ÁËÉÏÍò£¬ËùÒÔÓÖ¶ÔÊý¾ÝÈ¡ÁËÒÔ2Ϊµ×µÄ¶ÔÊýת»»£¬×ª»»ºó·¢ÏÖ±í´ïֵûÓÐÄÇô´óµÄ²î±ðÁË£¬µ«ÊÇ·¢ÏÖÓÐÖØ¸´Ì½Õ뼯²¢½ø¶ø°´ÕÕȡƽ¾ùÖµ½øÐкϲ¢¡£
2.2.3 ¶àƽ̨»ùÒòоƬÊý¾ÝÕûºÏ
Òª×ömeta·ÖÎö£¬Ê×ÏÈÎÒÃÇ×öµÄÊǽºÖÊÁöµÄÉú´æÊ±¼äµÄmeta·ÖÎö£¬RÀïÃæÓÐÒ»¸öR°ü¿ÉÒÔÍê³ÉÕâ¸ö¹¤×÷£¬Õâ¸öR°ü¾ÍÊÇRankProd¡£RankProdÕâ¸öR°ü¿ÉÒÔ×öAffymetrixоƬºÍcDNAоƬµÄ²îÒì±í´ï»ùÒòµÄ¼ø±ð£»´ËÍâÕâ¸ö°üÀïÒ»¸ö¸ß¼¶Óô¦¾ÍÊÇ¿ÉÒÔÓÃÀ´¼ìÑé¾¹ýÒ©ÎïÖÎÁƺóÉϵ÷ºÍϵ÷±í´ïµÄ»ùÒò¡£RankProdÕâ¸öR°üÎüÒýÈ˵ÄÒ»µã¾ÍÊÇËû¿ÉÒÔ°Ñ´Ó²»Í¬À´Ô´»ñµÃµ½µÄÊý¾Ý¼¯ÕûºÏµ½Ò»¸ö·ÖÎöÖÐÈ¥£¬ÕâÑù¿ÉÒÔÌá¸ßͳ¼Æ¼ìÑéµÄЧÄÜ£¨power£©£¬ÕâÒ»µãÕýÊÇ·ûºÏmeta·ÖÎöµÄ˼Ïë¡£Ê×ÏȰ²×°RankProdÕâ¸ö°ü£¬ÔÚRÖзֱðÊäÈësource(\ºÍbiocLite(\£»È»ºó¼ÓÔØRankProd°ülibrary(RankProd)£¬ÕâÑù¾Í¿ÉÒÔʹÓÃRankProdÕâ¸ö°üÀïµÄº¯ÊýÁË¡£ÎÒµÄ
Êý¾ÝÊÇÒ»¸öÀà±ð£¨One class data£©µÄÊý¾Ý£¬½¨Á¢Ò»¸ö³¤¶ÈΪnµÄÏòÁ¿£¬ÕâÀïµÄn´ú±í
9
»ùÒòоƬÊý¾ÝÜöÝÍ¡ª½ºÖÊÁöÔ¤ºó·ÖÎö
µÄÊÇÑù±¾µÄ¸öÊý£¬ÓÉÓÚÊý¾ÝÊÇÒ»¸öÀà±ðµÄËùÒÔÏòÁ¿ÀïÃæ´æ·ÅµÄÊÇn¸ö1£»¶øÇÒÊý¾ÝÊÇÀ´×Ô²»Í¬µÄʵÑéµÄÒ²¾ÍÊǶà¸öÀ´Ô´£¨Multiple origins£©µÄ£¬½¨Á¢Ò»¸öoriginÏòÁ¿£¬ÏòÁ¿ÀïÃæµÄÔªËØÖµÊÇ´Ó1È¡µ½L£¬ÆäÖÐLÊÇÊý¾ÝÀ´Ô´µÄÊýÄ¿£¬ÓÉÓÚÎÒÃǵÄÊÇ7Ì×Êý¾Ý£¬ËùÒÔÕâÀïLµÈÓÚ7¡£ÀûÓÃRankProdÕâ¸ö°ü¶Ô½ºÖÊÁöÊý¾Ý×ömeta·ÖÎöʱ£¬Ö÷ÒªÓõ½ÁË2¸öº¯ÊýRPadvance£¨£©ºÍtopGene£¨£©¡£
2.2.4 ¼ø¶¨·çÏÕͨ·
ͨ¹ýKEGGÊý¾Ý¿âÊäÈë¹Ø¼ü´ÊgliomaºÍsurvivalµÃµ½·ûºÏÒªÇóµÄmap05214Õâ¸öͨ·£¬Í¨¹ýRÀïÃæµÄorg.Hs.eg.dbÕâ¸ö°üÌáÈ¡³öͨ·ÉϵĻùÒòºÍmeta·ÖÎö·ÖÎö³öÀ´µÄÉÏϵ÷»ùÒò£¬ÎÒÃÇ¿ÉÒÔÕÒµ½·çÏÕͨ·£¬¿ÉÒÔ½øÒ»²½cox±ÈÀý·çÏջعé·ÖÎö¡£
2.2.5 Éú´æ·ÖÎö
ΪÁË´ÓÎÒÌáÈ¡µ½µÄ4275¸ö»ùÒòÖÐÍÚ¾òÔ¤ºó»ùÒò£¬ÎÒÃDzÉÓÃÁËcox±ÈÀý·çÏջعéÄ£ÐÍ¡£Ã¿¸ö»ùÒò×÷Ϊһ¸öбäÁ¿£¬Ã¿¸öÑù±¾µÄÉú´æÊ±¼ä×÷ΪÒò±äÁ¿£¬ËùÒÔÒ»¹²ÓÐ4275¸öбäÁ¿¡£¶ÔËùÓÐбäÁ¿×ö4275ÔªµÄcox±ÈÀý·çÏջعé·ÖÎö£¬Ã¿¸öбäÁ¿µÃµ½Ò»¸ö¸ÅÂÊÖµ£¬Õâ¸ö¸ÅÂÊÖµ±íʾ¸ÃбäÁ¿¶ÔÑù±¾Éú´æÊ±¼äµÄÓ°ÏìÊÇ·ñÏÔÖø£¬È¡ãÐֵΪ0.0001£¨Èç¹ûãÐֵȡ0.01»ò0.001ÔòÍÚ¾ò³öÀ´µÄÔ¤ºó»ùÒò¹ý¶à£¬Ã»ÓÐÆðµ½ºÜºÃµÄɸѡ×÷Óã©£¬ÆäֵСÓÚ¸ÃãÐÖµµÄ±»ÈÏΪÊÇÔ¤ºó»ùÒò£¬´óÓÚ¸ÃãÐÖµµÄ±»ÈÏΪÊǶÔÉú´æÊ±¼äµÄÓ°ÏìÊÇͳ¼ÆÑ§²»ÏÔÖøµÄ¡£
ΪÁ˶Ôÿ¸öÑù±¾¸øÓèÒ»¸ö´ò·ÖÖµ£¬¸Ã·ÖÖµ´ú±í¸ÃÑù±¾µÄ·çÏÕÖµ»ò·çÏյ÷֣¨risk score£©£¬¹¹½¨Ò»¸öÔ¤ºóÄ£ÐÍ£¬ÀûÓøÃÄ£ÐͶÔɸѡ³öÀ´µÄÔ¤ºó»ùÒòµÄ±í´ï½øÐмÓȨÇóºÍ£¬²¢½«Çó³öÀ´µÄ½á¹û×÷Ϊÿ¸öÑù±¾µÄ·çÏյ÷֣¬·çÏյ÷ÖÖµÔòÊÇͨ¹ýcox±ÈÀý·çÏջعé·ÖÎöµÃµ½µÄ£¨¶ÔÉÏÒ»²½É¸Ñ¡³öÀ´µÄÔ¤ºó»ùÒò×öcox±ÈÀý·çÏջعé·ÖÎö¿ÉÒԵõ½»Ø¹éϵÊý£¬ÀûÓûعéϵÊý¶Ô±í´ïÖµÀ´¼ÓȨ£©
»ñȡÿ¸öÑù±¾µÄ·çÏյ÷ÖÖµ£¨risk score£©Ö®ºó£¬Óû½øÐÐÉú´æ·ÖÎö»¹Ð轫֮ǰµÃµ½µÄÑù±¾µÄÁ¬ÐøµÄÑù±¾·çÏյ÷ÖÀëÉ¢»¯£¨ÕâÀï¸ù¾ÝÑù±¾·çÏյ÷ֵĴóС½øÐÐÁË
18
10
¹þ¶û±õÒ½¿Æ´óѧ±¾¿Æ±ÏÒµÂÛÎÄ
¶þ·ÖÀ໯£©¡£×ۺϿ¼ÂÇÉ趨һ¸öµÃ·ÖãÐÖµ£¬´óÓÚ¸ÃãÐÖµµÄÑù±¾Àà±ð¼ÇΪ¸ß·çÏյ÷ÖÑù±¾£¨high risk score£©£¬¶øÐ¡ÓÚ¸ÃãÐÖµµÄÑù±¾Àà±ð¼ÇΪµÍ·çÏյ÷ÖÑù±¾£¨low risk score£©ÎªÁËÈ·¶¨Õâ¸öãÐÖµ,ÎÒÃDzÉÓÃʱ¼äÒÀÀµµÄÊÜÊÔÕß¹¤×÷ÌØÕ÷ÇúÏߣ¨time-dependent receiver operating characteristic£¨ROC£©curve£©19À´µÃµ½Ñù±¾Àà±ð×îÊʵĶþ·ÖÀàãÐÖµ£¬¿ÉÒÔͨ¹ýsurvivalROCÕâ¸öRÈí¼þ°üÀ´½øÐд˲½Öè¡£²¢½ø¶ø¿ÉÒÔÀûÓó˻ý¼«ÏÞ·¨À´¹À¼Æ´æ»îÂÊ£¬Ê¹ÓÃKaplan-MeierÀ´¹À¼ÆºÍ»æÖÆÉú´æÇúÏߣ¬ÀûÓÃlog rank¼ìÑéÀ´±È½Ï¶à×éÉú´æÇúÏߵIJî±ð¡£Éú´æ·ÖÎöÕâÒ»²½¹²ÀûÓò»Í¬µÄÊý¾Ý×öÁËÁ½´ÎÉú´æ·ÖÎö£ºµÚÒ»´ÎÊÇÕûÌ×Êý¾ÝµÄÉú´æ·ÖÎö£»µÚ¶þ´ÎÊǵÚÒ»Ì×´óÑù±¾Êý¾Ý£¨ºÏ²¢±í1ÖÐGSE4271µÄÁ½¸ö²»Í¬Æ½Ì¨µÄÑù±¾£©×öÉú´æ·ÖÎö¡£
11
»ùÒòоƬÊý¾ÝÜöÝÍ¡ª½ºÖÊÁöÔ¤ºó·ÖÎö
3¡¢½á ¹û
3.1 ½ºÖÊÁö»ùÒòоƬÕûºÏÊý¾Ý
Ö÷Ҫͨ¹ýGEOÕâ¸öÊý¾Ý¿â»ñµÃ½ºÖÊÁöоƬÊý¾ÝºÍÉú´æÊý¾Ý£¬¼ìË÷ÈÕÆÚ½ØÖ¹2013Äê11Ô£¬¾¹ýÊÖ¶¯µÄɸѡÅųýÁ˲»·ûºÏÒªÇóµÄÊý¾ÝÒ»¹²µÃµ½ÁË7Ì×½ºÖÊÁöÉú´æÊ±¼äµÄÊý¾Ý£¬±í1
±í1.ÒÑ»ñµÃ´øÓÐÉú´æÊý¾ÝµÄÊý¾Ý¼¯Áбí
TABLE 1£®Picked data sets have survival data¡¢
Data set GSE4271.GPL96 GSE4271.GPL97 GSE4412.GPL96 GSE4412.GPL97 GSE43114 GSE43115 GSE43116 GSE43353 GSE43388.GPL570 GSE43388.GPL14951
Platform HG-U133A HG-U133B HG-U133A HG-U133B HG-U133_Plus_2 HG-U133_Plus_2 HG-U133_Plus_2 Illumina HG-U133_Plus_2 Illumina
Samples 100 100 85 85 6 7 2 2 15 2
3.2 ½ºÖÊÁöµÄKEGGͨ·ͼ
ÔÚKEGGÊý¾Ý¿âµÄKEGG PATHWAYÖеõ½¿ÉÒԵõ½½ºÖÊÁöÏà¹Ø»ùÒòµÄͨ·£¬Í¼1
12
¹þ¶û±õÒ½¿Æ´óѧ±¾¿Æ±ÏÒµÂÛÎÄ
ͼ1½ºÖÊÁöµÄKEGGͨ·
Figure 1 The KEGG pathway of glioma
±í2 ͨ·ÉϵĻùÒò
TABLE 2 The genes in the pathway
13
»ùÒòоƬÊý¾ÝÜöÝÍ¡ª½ºÖÊÁöÔ¤ºó·ÖÎö
±í2ÖÐÁгöÀ´µÄÊÇÀûÓÃorg.Hs.eg.dbÕâ¸öR°ü´ÓKEGG PATHWAYÕâ¸öÊý¾Ý¿âµÄmap05214ͨ·ÉÏÌáÈ¡³öÀ´µÄ»ùÒòµÄEntrez ID
3.3 meta·ÖÎö
ÀûÓÃRÀïÃæµÄRankProd20°ü¶Ô֮ǰ»ñµÃµÄ¹ØÓÚ½ºÖÊĸϸ°ûÁöоƬ±í´ïÊý¾Ýͨ¹ýmeta·ÖÎö½øÐÐÕûºÏ£¬¹²»ñµÃ4275¸ö»ùÒò£¬Èçͼ2
ͼ2 ÕûºÏµÄ»ùÒò£¨Í¼ÖÐÖ»ÊÇÒ»²¿·Ö£©
Figure 2 Integrated genes£¨partly not all£©
ͨ¹ý±àдR³ÌÐòÕûºÏÁ˶àÌ×±í´ïÊý¾ÝÀïµÄ»ùÒò£¬Ôö¼Ó½á¹ûµÄ¿ÉÐŶȣ¬Ê¹½á¹û¸ü¾ß˵·þÁ¦¡£
3.4 Éú´æ·ÖÎö
½«´ÓGEO»ñµÃ7Ì×½ºÖÊÁöÏà¹ØµÄ4275¸ö»ùÒòºÏ²¢µ½Ò»Æðͨ¹ýcox±ÈÀý·çÏÕ
14
¹þ¶û±õÒ½¿Æ´óѧ±¾¿Æ±ÏÒµÂÛÎÄ
»Ø¹é·ÖÎö£¨p<0.0001£©µÃµ½ÁË70¸ö»ùÒò×÷ΪԤºó»ùÒò£¬ÀûÓÃÕâ70¸öÔ¤ºó»ùÒò×ö¶àÔªcox±ÈÀý·çÏջعé·ÖÎö¿ÉÒԵõ½Ã¿¸ö»ùÒòµÄȨֵ£¬Í¨¹ýȨֵºÍ»ùÒòÔÚÑù±¾Öеıí´ïÖµ¿ÉÒԵõ½Ã¿¸öÑù±¾µÄ·çÏյ÷֡£ÀûÓÃsurvivalROCÕâ¸ö°üÀïÃæµÄÉú´æÊ±¼äÒÀÀµµÄÊÜÊÔÕß¹¤×÷ÌØÕ÷ÇúÏß·ÖÎöÀ´µÃµ½×î¼ÑµÄ¶þ·ÖÀàãÐÖµ£¨optimal cutoff£©¡£ÎÒµÄoptimal cutoff=3.35£¬´óÓÚ¸ÃãÐÖµµÄ¼ÇΪ¸ß·çÏյ÷ÖÑù±¾£¬Ð¡ÓÚ¸ÃãÐÖµµÄ¼ÇΪµÍ·çÏյ÷ÖÑù±¾¡£ÕâÑù£¬358¸öÑù±¾¾Í·ÖΪ125¸öµÍ·çÏյ÷ֵÄÑù±¾ºÍ233¸ö¸ß·çÏյ÷ÖÑù±¾¡£½øÐÐlog-rank¼ìÑéµÃµ½µÄpÖµ< 1.91e-10,˵Ã÷Á½×éÇúÏß²îÒì·Ç³£ÏÔÖø£¬½á¹û¾ßÓÐͳ¼ÆÑ§ÒâÒ壬ͼ2£º
ͼ3 ÕûÌ×Ñù±¾µÄÉú´æÇúÏß
Figure 3 survival curves of all sets samples
15
»ùÒòоƬÊý¾ÝÜöÝÍ¡ª½ºÖÊÁöÔ¤ºó·ÖÎö
½ÓÏÂÀ´ÎªÁËÖ¤Ã÷ÀûÓÃÕûÌ×Êý¾Ý×öµÄÉú´æ·ÖÎöµÄЧ¹û£¬ÎÒÃÇÓÖµ¥¶À×öÁËGSE4271Êý¾ÝµÄÉú´æ·ÖÎöÇúÏߣ¬¼ûͼ4£º
ͼ4 GSE4271Ñù±¾µÄÉú´æÇúÏß
Figure 4 survival curve of GSE4271
ͼ4ÊÇͨ¹ýÕûºÏGSE4271µÄÁ½¸ö²»Í¬Æ½Ì¨µÄÊý¾ÝµÃ³öÀ´µÄÉú´æÇúÏßͼ£¬ÓÉͼÖпÉÒÔ¿´µ½GSE4271Á½¸ö²»Í¬Æ½Ì¨µÄÊý¾ÝÕûºÏºóµÍ·çÏÕÑù±¾ÓÐ104¸ö£¬¸ß·çÏÕÑù±¾ÓÐ50¸ö£¬µÍ·çÏÕÑù±¾µÄƽ¾ùÉú´æÊ±¼äÏÔÖøµÄ¸ßÓڸ߷çÏÕÑù±¾µÄÉú´æÊ±¼ä¡£
16
¹þ¶û±õÒ½¿Æ´óѧ±¾¿Æ±ÏÒµÂÛÎÄ
4¡¢ÌÖ ÂÛ
±¾Ñо¿ÖУ¬ÎÒÃÇ´ÓGEOÊý¾Ý¿â»ñµÃµÄ4275¸ö»ùÒò¾¹ýcox±ÈÀý·çÏջعé·ÖÎöºóɸѡ³öÁË70¸öÔ¤ºó»ùÒò¡£ÓÉ4275¸ö»ùÒò½µµ½70¸öÔ¤ºó»ùÒò£¬²»½ö½µµÍÁËÑо¿µÄ¸´Ôӳ̶ȶøÇÒÒ²±£ÁôÁ˴󲿷ֵÄÖØÒªµÄÐÅÏ¢¡£Ëæ×Å´óÁ¿µÄ¸ßͨÁ¿±í´ïÊý¾ÝµÄѸÃÍ·¢Õ¹£¬³öÏÖÁËÔ½À´Ô½¶àµÄ»ùÒò±í´ïÊý¾Ý¿â£¬ÎÒÃÇÓ¦¸Ã³ä·ÖÀûÓÃÕâЩÊý¾ÝÀ´ÍÚ¾ò³öÒþ²ØÔÚÀïÃæµÄÐÅÏ¢¡£½üÄêÀ´¶Ômeta·ÖÎöµÄÑо¿Ô½À´Ô½¶à£¬Æä½á¹ûÒ²²¢²»Í³Ò»£¬ÎÒÃÇÓ¦³ä·ÖÀûÓÃÕâЩ²»Í¬Ñо¿µÄ½á¹û£¬²¢½áºÏµ½Ò»ÆðÀ´×ö³ä·ÖµÄÈ«ÃæµÄ·ÖÎö£¬¿ÉÒÔÌá¸ßͳ¼ÆÑ§ÉϵĹ¦Ð§£¨power£©¡£ÀûÓÃcox±ÈÀý·çÏջعé·ÖÎö¿ÉÒԵõ½½«Ñù±¾¶þ·ÖÀ໯ºóµÃµ½µÄ¸ß·çÏÕÑù±¾ºÍµÍ·çÏÕÑù±¾Éú´æÊ±¼ä²îÒìµÄÏÔÖø³Ì¶È¡£
Ô·¢ÐÔÄÔÖ×ÁöÖÐÔ¤ºó×î²îµÄÊÇÄÔ½ºÖÊÁö,ÒàÊÇ×î³£¼ûµÄÒÔ¼°¶ñÐԳ̶È×î¸ßµÄÔ·¢ÐÔÄÔÖ×Áö£¬ÆäÔ¤ºóÓ뽺ÖÊÁöÉúÎïÑ§ÌØÐÔ¡¢Ö×ÁöÉú³¤²¿Î»¡¢²¡ÈËÊÖÊõ·½Ê½µÈÖÎÁÆ´ëÊ©ÓйØ,ÓÉÓÚ½ºÖÊÁöµÄ½þÈóÉú³¤µÄÌØµã,Æä¶ÔÉñ¾ÏµÍ³ÆÆ»µÐԽϴó,ĿǰÊÖÊõÄÑÒÔÍêÈ«Çгý,¾ø´ó¶àÊý½ºÖÊÁö¾¹ýÊÖÊõºÍ·Å»¯ÁÆÖÎÁƺ󸴷¢¸ÅÂÊÈÔÈ»±È½Ï´ó¡£½ºÖÊÁö·ÖΪ4¸öµÈ¼¶£ºI¡¢II¡¢III¡¢IV¡£µÍµÈ¼¶µÄ½ºÖÊÁöÊǸ߶ȷֻ¯µÄ£¬»¼ÕßÒ²ÍùÍù¾ßÓбȽÏÁ¼ºÃµÄÔ¤ºóЧ¹û£»¸ßµÈ¼¶µÄ½ºÖÊÁöÔòÔ¤ºóЧ¹û½Ï²î¡£Ó°ÏìÔ¤ºóµÄÒòËØÓУº»¼ÕßÄêÁ䣬Ö×ÁöÇгý³Ì¶È£¬²¡È˵IJ¡ÀíµÈ¼¶£¬·ÅÉäÐÔÖÎÁƵļÁÁ¿µÈÓйأ¬Ó¦´ÓÕâЩ·½ÃæÈëÊÖ¡£Ä¿Ç°ÒÑÓÐÑо¿±íÃ÷½ºÖÊÁö»¼ÕßÊõºó·ÅÉäÖÎÁÆ¿ÉÒÔ¸ÄÉÆ¾Ö²¿¸´·¢£¬µ«ÊÇЧ¹ûÒ²²»ÊǺܺã¬Î´À´Ó¦¸ÃÓиü¶àµÄÑо¿Ê¹¶Ô¸ßµÈ¼¶µÄ½ºÖÊÁöµÄÔ¤ºóЧ¹û´ïµ½ÂúÒâµÄ³Ì¶È¡£
Ëæ×Å»ùÒò×é²âÐòÊý¾ÝµÄ¿ìËÙÔö³¤£¬²úÉúÁË´óÁ¿µÄÉúÎïÊý¾Ý£¬Í¬Ê±ÕâЩÊý¾ÝÒ²Òþ²ØÁ˺ܶàµÄÉúÎïѧ֪ʶ£¬ÀûÓÃÉúÎïÐÅϢѧ¿ÉÒÔ¶ÔÕâЩÊý¾Ý½øÐзÖÎö£¬´¦ÀíµÈ£¬¿ÉÒÔÍÚ¿ªÕâЩÉúÎïÊý¾ÝµÄÄÚº£¬½ø¶øÖ¸µ¼ÁÙ´²¶Ô½ºÖÊÁöµÄÖÎÁÆ£¬Ô¤ºó£¬ÒÑ´ïµ½ÑÓ³¤²¡ÈËÉú´æÊ±¼äµÄÄ¿µÄ¡£
17
»ùÒòоƬÊý¾ÝÜöÝÍ¡ª½ºÖÊÁöÔ¤ºó·ÖÎö
5¡¢½á ÂÛ
ÏÖ´æµÄÕâЩ»ùÒò±í´ïÊý¾Ý¿âµÄÊý¾Ý¿â½Ó¿Ú£¬±í´ïÊý¾Ý´æ´¢·½Ê½ºÍÁÙ´²metaÊý¾Ý×¢Ê͵ȷ½ÃæÔÚ¸ñʽÉ϶¼´æÔÚ²»ÏàÈݵÄÎÊÌ⣬¶øÇÒ´Ó²»Í¬µÄÊý¾Ý¿âµÃµ½µÄÊý¾ÝµÄ×¢ÊÍÒ²»áÓв»Ò»ÖµÄÇé¿ö¡£ÕâЩȱÏݵ¼ÖÂѰÕÒ¼²²¡µÄÔ¤ºó»ùÒòʱ´æÔںܴóµÄÀ§ÄÑ¡£
ÀûÓÃmeta·ÖÎö¶Ô¶à¸ö²»Í¬ÊµÑéµÄ¶ÀÁ¢Ñо¿µÄ½á¹û½øÐйéÄÉ×ۺϣ¬¿ÉÒÔÔö¼ÓÑù±¾Á¿²¢Ìá¸ß½á¹ûµÄͳ¼ÆÑ§ÒâÒåʹ֮¸ü¼ÓÈÃÈËÐÅ·þ£»ÔÚKEGGÊý¾Ý¿âÉÏÕÒµ½Á˽ºÖÊÁöÏà¹ØµÄ·çÏÕͨ·£¬¿ÉÒÔ¹Û²ì³ö±í´ïÉÏϵ÷µÄ»ùÒò£¬±í´ïÉÏϵ÷µÄ»ùÒòºÜÓпÉÄÜ»á×÷ΪԤºó»ùÒòÀ´¶Ô½ºÖÊÁö²¡È˽øÐÐÔ¤ºó£»ÀûÓõ¥±äÁ¿µÄCox±ÈÀý·çÏջعé·ÖÎöÄ£ÐÍ¿ÉÒÔ·ÖÎö¶àÖÖÒòËØ¶ÔÉú´æÊ±¼äµÄÓ°Ï첢ѰÕÒ½ºÖÊÁöµÄÔ¤ºó»ùÒò¡£
½ºÖÊÁö׼ȷµÄ·¢²¡ÔÒòÉв»Ã÷È·£¬¿ÉÄÜÓëÇ××ÓÒÅ´«£¬ÈËÃǵÄÉú»î»·¾³ÒÔ¼°ÈËÌåÃâÒß¹¦ÄܵÄʧµ÷£¬Ô°©»ùÒò±»¼¤»î£¬ÒÖ°©»ùÒò±»ÒÖÖÆµÈµÈһЩÒòËØÓйØÏµÍ¬Ê±Ò²ÊǶà¸ö»ùÒò²ÎÓëÆäÖеĸ´ÔÓ¼²²¡¡£Ó°ÏìÄÔ½ºÖÊÁöÔ¤ºóµÄÒòËØÓкܶ࣬È粡È˵ÄÄêÁ䣬½ºÖÊÁöµÄ²¡ÀíµÈ¼¶£¬½ºÖÊÁöÖ×Áö²¿Î»ÊÖÊõÇгý³Ì¶ÈÒÔ¼°·¶Î§µÈ¡£Ä¿Ç°£¬ÄÔ½ºÖÊÁöµÄÁÙ´²ÖÎÁÆ´ó¶àÊDzÉÓÃÊÖÊõ£¬·ÅÁƺͻ¯ÁƵÄÁªºÏÖÎÁƵÄÊֶΣ¬µ«ÊÇÊÖÊõÈÔÊÇÆäÖÐ×îΪ¹Ø¼üµÄ·½·¨Ò²ÊÇ×îÖ÷ÒªµÄÓ°Ï첡ÈË´æ»îÂʵÄÒòËØ£¬»¯ÁƵķ½°¸Ä¿Ç°Ò²½Ï¶à£¬²»Í¬µÄ·Å»¯ÁÆÖÎÁÆ·½°¸Ò²»á²úÉú²»Í¬µÄÔ¤ºóЧ¹û£¬Ñ¡ÔñºÎÖÖ·Å»¯ÁÆÊÖ¶ÎÒ²ÊÇδÀ´ÐèÒª¿ÆÑÐÈËÔ±½øÒ»²½Ñо¿µÄ¡£½ºÖÊÁöµÄ²¡Àí·Ö¼¶ÓëÔ¤ºóÒ²ÓйØÏµ£¬½ºÖÊÁöµÈ¼¶Ô½µÍ£¬Ô¤ºóЧ¹ûÔ½ºÃ£¬·´Ö®ÒàÈ»¡£
ÎÒÃǵÄÑо¿½á¹û»¹´¦Óڽϳõ¼¶½×¶Î£¬ÏàÐÅËæ×ÅÒÔºó֪ʶµÄ²»¶Ï»ýÀÛ¿ÉÒԵõ½¸ü½øÒ»²½µÄ¸üºÃµÄ½á¹û£¬À´°ïÖúÁÙ´²Ò½ÉúÌá¸ßÊÖÊõЧ¹û£¬¼õÉÙÔÙ¸´·¢µÄ¿ÉÄÜÐÔ¡£
18
¹þ¶û±õÒ½¿Æ´óѧ±¾¿Æ±ÏÒµÂÛÎÄ
6¡¢Ö л
Ê×ÏȸÐлÎҵĵ¼Ê¦ÕÅÉܾüÀÏʦ£¬½«ÎÒÒýÁì½øÈëÉúÎïÐÅϢѧѧϰºÍ¿ÆÑеĴóÃÅ£¬ÔÚÂÛÎÄÍê³ÉÖ®¼Ê£¬Ïò¹ØÐİïÖúºÍÖ¸µ¼ÎÒµÄÖ¸µ¼ÀÏʦÕÅÉܾüÀÏʦÔٴαíʾÖÔÐĵĸÐл²¢ÖÂÒÔ³ç¸ßµÄ¾´Ò⣡ÕÅÉܾüÀÏʦµÄϤÐÄÖ¸µ¼ºÍÑϸñÒªÇó£¬ÍüÎҵŤ×÷¾«ÉñÁîÈ˾´Å壬¶ÔÎÒµÄÓ°ÏìͬÑùºÜ´ó£¬´Ùʹ×Ô¼ºÅ¬Á¦Íê³É¿ÎÌâ¡£Æä´Î¸Ðл¹þ¶û±õÒ½¿Æ´óѧÉúÎïÐÅÏ¢¿ÆÑ§Óë¼¼ÊõѧԺµÄÀÏʦºÍͬѧÃÇ£¬ÔÚѧУµÄѧϰÉú»î¼´½«½áÊø£¬»Ø¹ËÎåÄêÀ´µÄѧϰ¾Àú£¬Ãæ¶ÔÏÖÔÚµÄÊÕ»ñ£¬ÎҸе½ÎÞÏÞÐÀο¡£¶à¿÷ÁËËûÃǵÄ×»×»½Ìµ¼ºÍ°ïÖú£¬²ÅΪÎÒ½ñÌì±ÏÉè˳ÀûµÄÍê³É´òºÃÁË»ù´¡¡£Îª´Ë£¬ÎÒÏòÈÈÐİïÖú¹ýÎÒµÄËùÓÐÀÏʦºÍͬѧ±íʾÓÉÖԵĸÐл!
¸ÐлһֱÅãÎÒ×ß¹ýÎåÄêÉú»îµÄÇÞÊÒºÃÓÑÃÇ£ºÒ×Á岨£¬½ð³¯£¬³Ìг¬£¬½¯Ò»Ãù£¬Á¬Æô³¬£»¸ÐлÎÒµÄͬѧÍõíµ£¬ÀîÐÊ¡£¸ÐлËûÃǵÄÒ»Ö±Åã°é²»¹ÜÉú»î»¹ÊÇѧϰÖÐÓöµ½µÄÀ§ÄÑ£¬ÓÐËûÃǵİïÖú×ÜÄܼ°Ê±¹¥¿Ë£¬ÔÚÕâÀïÏòËûÃDZíʾ¸Ðл¡£¸ÐлÎҵĺÃÓÑÃÇ£¬ÎåÄêµÄʱ¹â´ó¼Ò»¥Ïàѧϰ£¬»¥°ï»¥Öú£¬ÄãÃǸøÁËÎҺܶàµÄ¿ìÀÖ¡£
¸Ðл¼ÒÈ˸øÒÔÎÒÉú»îºÍѧϰÉϵÄÖ§³Ö¡£
×îºó£¬ÖÔÐĵظÐлÔÚ°Ùæ֮ÖÐÆÀÔÄÂÛÎĺͲμӴð±çµÄ¸÷λר¼Ò¡¢½ÌÊÚ!
19
»ùÒòоƬÊý¾ÝÜöÝÍ¡ª½ºÖÊÁöÔ¤ºó·ÖÎö
7¡¢²Î¿¼ÎÄÏ×
1
Louis D, Ohgaki H, Wiestler O, Cavenee W (2007) WHO classification of tumours
of the central nervous system. IARC, Lyon
2
Lin Y, Jiang T, Zhou K, Xu L, Chen B, Li G, Qiu X, Jiang T, Zhang W, Song SW (2009)
Plasma IGFBP-2 levels predict clinical outcomes of patients with high-grade gliomas. Neuro Oncol 11:¨C476
3
Jung CS, Foerch C, Schanzer A, Heck A, Plate KH, Seifert V, Steinmetz H, Raabe A, Sitzer
M (2007) Serum GFAP is a diagnostic marker for glioblastoma multiforme. Brain 130:3336¨C3341
4
Quan N, Herkenham M (2002) Connecting cytokines and brain: a review of current issues.
Histol Histopathol 17:273¨C288
5
Muller L, Pawelec G (2003) Cytokines and antitumor immunity. Technol Cancer Res Treat
2:183¨C194
6
Zeh HJ, Winikoff S, Landsittel DP, Gorelik E, Marrangoni AM, Velikokhatnaya L, Winans
MT, Lee K, Moser A, Bartlett D, Lotze MT, Siegfried JM, Whitcomb D, Papacristou G, Slivka A, Bigbee WL, Lokshin AE (2005) Multianalyte profiling of serum cytokines for detection of pancreatic cancer. Cancer Biomark 1:259¨C269
7
Sica D, Rayman P, Stanley J, Edinger M, Tubbs RR, Klein E, Bukowski R, Finke JH (1993)
Interleukin 7 enhances the proliferation and effector function of tumor-infiltrating lymphocytes from renal-cell carcinoma. Int J Cancer 53:941¨C947
8
Narazaki M, Yasukawa K, Saito T, Ohsugi Y, Fukui H, Koishihara Y, Yancopoulos GD,
Taga T, Kishimoto T (1993) Soluble forms of the interleukin-6 signal-transducing receptor component gp130 in human serum possessing a potential to inhibit signals through membrane-anchored gp130. Blood 82:1120¨C1126
9
Weiergraber O, Hemmann U, Kuster A, Muller-Newen G, Schneider J, Rose-John S,
Kurschat P, Brakenhoff JP, Hart MH, Stabel S et al (1995) Soluble human interleukin-6 receptor.
20
¹þ¶û±õÒ½¿Æ´óѧ±¾¿Æ±ÏÒµÂÛÎÄ
Expression in insect cells, purification and characterization. EurJ Biochem 234:661¨C669.
10
Narazaki M, Yasukawa K, Saito T, Ohsugi Y, Fukui H, Koishihara Y, Yancopoulos GD,
Taga T, Kishimoto T (1993) Soluble forms of the interleukin-6 signal-transducing receptor component gp130 in human serum possessing a potential to inhibit signals through membrane-anchored gp130. Blood 82:1120¨C1126
11
Rabe B, Chalaris A, May U, Waetzig GH, Seegert D, Williams AS, Jones SA, Rose-John S,
Scheller J (2008) Transgenic blockade of interleukin 6 transsignaling abrogates inflammation. Blood 111:1021¨C1028
12
Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G,
Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF, Kastelein RA (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2
13
Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C,
Schuler D, Probst-Hensch NM, Maiorka PC, et al: Genetic pathways to glioblastoma: a population-based study. Cancer Res 2004, 64:6892¨C6899.
14
Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR,Ding L,
Golub T, Mesirov JP, et al: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17:98¨C110.
15
Ketolainen JM, Alarmo EL, Tuominen VJ, Kallioniemi A: Parallel inhibition of cell
growth and induction of cell migration and invasion in breast cancer cells by bone morphogenetic protein 4. Breast Cancer Res Treat 2010, 124:377¨C386.
16
Zhou Z, Sun L, Wang Y, Wu Z, Geng J, Miu W, Pu Y, You Y, Yang Z, Liu N:Bone
morphogenetic protein 4 inhibits cell proliferation and inducesapoptosis in glioma stem cells. Cancer Biother Radiopharm 2011, 26:77¨C83.
17
Liu B, Tian D, Yi W, Wu L, Cai Q, Dong H, Shen H, Ji B, Wang L, Zhang S,et al: Effect of
bone morphogenetic protein 4 in the human brain glioma cell line U251. Cell Biochem Biophys 2010, 58:91¨C96.
21
»ùÒòоƬÊý¾ÝÜöÝÍ¡ª½ºÖÊÁöÔ¤ºó·ÖÎö
18
Fernandez-Rozadilla C, Palles C, Carvajal-Carmona L, Peterlongo P, Nici C,Veneroni S,
Pinheiro M, Teixeira MR, Moreno V, Lamas MJ, et al: BMP2/BMP4 colorectal cancer susceptibility loci in northern and southern European populations. Carcinogenesis 2013, 34:314¨C8.
19
Gravendeel LA, Kouwenhoven MC, Gevaert O, de Rooi JJ, Stubbs AP, Duijm JE, Daemen
A, Bleeker FE, Bralten LB, Kloosterhof NK, et al: Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res 2009, 69:9065¨C9072.
20
Soroceanu L, Murase R, Limbad C, Singer EL, Allison J, et al. (2012) Id-1 is aKey
Transcriptional Regulator of Glioblastoma Aggressiveness and a Novel Therapeutic Target. Cancer Res.
22