注意:预测值被保存在GDPFD序列中。因为GDPFD序列是一个标准的EViews序列,所以可以利用序列对象的所有标准工具来检验预测结果。我们可以通过绘出曲线图来检查实际值与拟合值。这是从1947:02到1995:01整个时期上的动态预测。对每个时期,前一个GDP(-1)的预测值在形成后期的GDP预测值时被使用。注意,实际值与拟合值图形的细微差别:9要对一个序列进行一步向前预测(静态预测),单击方程工具栏中的Forecast键,然后选择Static进行预测。EViews将显示预测结果为:10我们可以比较GDP的实际值和动态预测拟合值GDPFD、静态预测拟合值GDPFS,可以看出一步向前静态预测比动态预测要更为准确,因为对每个时期,在形成GDP的预测值时使用的是GDP(-1)的实际值。11§16.2 预测基础EViews将预测结果在Forecast测序列。预测样本中指定了EViews将计算出的拟合值和预测值的结果期间。如果出现不能预测的情况,将返还缺失值NA,在有些情况下,为了防止含有缺失name项命名并存储。我们把该序列称为预值的预测,EViews会自动进行缺失值调整。值得注意的是预测样本可能与估计方程所使用的样本观察值发生重叠,也可能没有重叠。对于没有包含在预测样本中的数值,会有两种选择。作为缺省,EViews将用其因变量的实际值充填,另一种是不选择Insert actuals for out-of-sample,预测样本外的数值将都赋予“NA”。于是,这些规则的结果是被预测序列中的所有数据在预测过程中将被覆盖,被预测序列的已存值将会丢失。12