【数学】福州市2020届高三毕业班适应性练习卷 文科数学 下载本文

41. (本小题满分12分)

已知f?x??2xlnx?x2?ax?3.

(1)当a?1时,求曲线y?f?x?在x?1处的切线方程; ?1?(2)若存在x0??,e?,使得f?x0?≥0成立,求a的取值范围.

?e?【命题意图】本题主要考查函数和导数及其应用等基础知识,意在考查直观想象、逻辑推理与数学运算等数学核心素养.满分12分.

【解答】f??x??2?lnx?1??2x?a. ······················································· 1分 (1)当a?1时,f?x??2xlnx?x2?x?3,f??x??2?lnx?1??2x?1,

所以f?1??5,f??1??5, ········································································ 3分 所以曲线y?f?x?在x?1处的切线方程为y?5?5?x?1?,即y?5x. ············ 5分 ?1?(2)存在x0??,e?,使得f?x0?≥0成立,

?e?2xlnx?x2?3?1?等价于不等式a≥?在?,e?有解. ······································ 6分

x?e??x?3??x?1?, ·x2?2x?32xlnx?x2?3设h?x???,则h??x???············· 7分 ??22xxx1当?x?1时,h??x??0,h?x?为增函数;当1?x?e时,h??x??0,h?x?为减函数.e ·············································································································· 8分

3e2?2e?1e2?2e?3?1??1?又h????,h?e???,故h???h?e?<0 ················· 10分

eeee????3e2?2e?1?1??1?所以当x??,e?时,h?x?>h????,··································· 11分

e?e??e??3e2?2e?1?3e2?2e?1,???. 所以a>?,即a的取值范围为??··················· 12分 ee??42. (本小题满分12分)

6x2y2已知椭圆C:2?2?1(a>b>0)的离心率为,以C的短轴为直径的圆与直线

3abl:3x?4y?5?0相切.

(1)求C的方程;

(2)直线y?x?m交椭圆C于M?x1,y1?,N?x2,y2?两点,且x1>x2.已知l上存在点P,使得△PMN是以?PMN为顶角的等腰直角三角形.若P在直线MN右下方,求m的值.

【命题意图】本题主要考查椭圆的标准方程、直线与椭圆的位置关系、直线和圆的位置关系等基础知识,意在考查直观想象、逻辑推理与数学运算等数学核心素养.满分12分.

【解答】(1)依题意,b?0?0?53?422?1, ·················································· 2分

ca2?b26因为离心率e??, ?aa3a2?16?所以,解得a?3, ··························································· 4分 a3x2所以椭圆C的标准方程为?y2?1. ····················································· 5分

3(2)因为直线y?x?m的倾斜角为45?,且△PMN是以?PMN为顶角的等腰直角三角形,P在直线MN右下方,所以NP∥x轴. ············································· 6分

过M作NP的垂线,垂足为Q,则Q为线段NP的中点,所以Q?x1,y2?,故

P?2x1?x2,y2?, ························································································ 7分

所以3?2x1?x2??4y2?5?0, 即3?2x1?x2??4?x2?m??5?0,

整理得6x1?x2?4m?5?0.① ·································· 8分

ONQyMxPl?x?3y?3,由?得4x2?6mx?3m2?3?0. ?y?x?m22所以??36m2?48m2?48>0,解得?2<m<2, ····································· 9分 3所以x1?x2??m,②

2x1x2?32·········································································· 10分 ?m?1?,③ ·

4m,④ 2由①-②得,x1?1?将④代入②得x2??1?m,⑤ ······························································· 11分

3?m?将④⑤代入③得??1??m?1???m?1??m?1?,解得m??1.

4?2?综上,m的值为?1. ········································································· 12分 (二)选考题:共10分.请考生在第22,23两题中任选一题作答.如果多做,则按所做第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4?4:坐标系与参数方程

?x??3?t,已知直角坐标系xOy中,曲线C1的参数方程为?(t为参数).以O为极点,

y?t?x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为?2?1?2?cos?.

(1)写出C1的普通方程和C2的直角坐标方程;

(2)设点P为C2上的任意一点,求P到C1距离的取值范围.

【命题意图】本题主要考查直线的参数方程、曲线直角坐标方程、极坐标方程的互化,圆的极坐标方程等基础知识,意在考查直观想象、逻辑推理与数学运算的数学核心素养.满分10分.

························· 2分 【解答】(1)C1的普通方程为x?y??3,即x?y?3?0. ·

2···················· 5分 曲线C2的直角坐标方程为x2?y2?1?2x,即?x?1??y?2.·

2·························· 6分 (2)由(1)知,C2是以?1,0?为圆心,半径r?2的圆, ·圆心C2?1,0?到C1的距离d?1?0?32?22>2, ···································· 7分

所以直线C1与圆C2相离,P到曲线C1距离的最小值为d?r?22?2?2;最大值d?r?22?··········································································· 9分 2?32, ·

?······································ 10分 所以P到曲线C1距离的取值范围为??2,32?. ·

23.(本小题满分10分)选修4?5:不等式选讲

已知a>0,b>0,c>0,且a?b?c?2. (1)求a2?b?c的取值范围; (2)求证:

149??≥18. abc【命题意图】本题主要考查配方法、基本不等式和不等式证明等基础知识,意在考查直观想象、逻辑推理与数学运算的数学核心素养.满分10分.

····························· 1分 【解答】(1)依题意,2?a?b?c>0,故0<a<2. ·1?7?············································· 3分 所以a?b?c?a??2?a???a???, ·

2?4?2227?7?22········ 5分 所以≤a?b?c<2??2?2??4,即a2?b?c的取值范围为?,4?. ·

4?4?(2)因为a>0,b>0,c>0,

b4ac9a4c9b?149????? ···························· 7分 所以?a?b?c??????14??abcabacbc??≥14?2b4ac9a4c9b??2??2? ···················· 8分 abacbc···························· 9分 ?14?24?29?236?36. ·

又因为a?b?c?2, 所以

149??≥18. ·········································································· 10分 abc