非稳态通风稀释方程是描述在 假定室内初始浓度C1=0,且稀释时间
时间内,室内污染浓度与换气量之间的关系,稳态通风稀释方程是
时室内污染浓度C2与通风量G的关系。
8.理论换气量应分别计算稀释各种污染物所需的风量,然后取其最大值;工程设计根据通风房间的具体特点,选取其中一种有成表性的污染物允许浓度标准确定(如常用室内CO2允许浓度确定新风量);ASHRAE标准中规定的最小通风量:
式中:Gp—是每人所需新风量,P—在室人数,Gb—单位建筑面积所需新风量,A—所需通风面积。
9.气流组织的分布特性常用以下几个参量给予评价:
①不均匀系数—表示室内气流分布均匀性好坏的参量;
②空气年龄—是描述室内旧空气被新鲜空气替代的快慢程度,年龄越短,旧空气被置换越快空气越新鲜;
③换气效率—表示理论上最短的换气时间In与实际换气时间
之比;
④通风效率—表示排风口处的污染浓度与室内平均浓度之比,其物理意义是指从室内移出污染物的迅速程度;
⑤能量利用系数—指投入能量的利用程度,反映出其经济指标。
10.由室内外温度差而引起的空气密度差或由高度差引起的自生风力称为热压;把室内某一点的压力与室外同标高未受扰动的空气压力的差值称为该点的余压;当气流与障碍物相遇时,迎风面气流受阻,动压降低,静压增高,侧面和其背风面由于产生局部涡流静压降低,和远处未受干扰的气流相比,这种静压的升高或降低统称为“风压”。“热压”、“余压”和“风压”之间的关系可用下式表示:
它表示某一建筑物受到风压热压同时作用时,外围护结构上各窗孔的内外压差就等于各窗孔的余压和室外风压之差。
11.由于“热压”只与温差或高度差有关,由此引进的自生风力较大且便于计算,所以在设计中应给予考虑(尤其对多层建筑的影响是十分明显的)。而“风压”则与室外风速和风向有关,是一个难确定因素,所以计算时只定量考虑“热压”作用,“风压”只作一般定性考虑。
第四章 建筑环境中的热湿环境
1.通过围护结构的传热方式分对流换热(对流质交换),导热和辐射三种形式,传递热量包括“显热”和“潜热”两部分;得热量的多少与围护结构使用的材料,表面精糙度,表面颜色的深浅以及结构等有关。
2.室外综合温度是相当于室外气温度由原来的室外温度增加了一个太阳辐射的等效温度值,其关系式:
tz是考虑到太阳的入射角不同,围护结构外表面对直射辐射和散射辐射有着不同的吸收率,为了计算方便,式中吸收率
用一个综合当量值表示。在白天由于太阳辐射的强度>>长波辐射,所以在计算白天
的室外综合温度可以不考虑其影响,在夜间由于没有太阳辐射作用,天空的背景温度<<空气温度,因此建筑物向天空的辐射放热量是不可忽略的,尤其是在建筑物与天空之间的角系数比较大的情况,而冬季若忽略其影响会导致估算负荷偏低。
3.房间得热量:是指某时刻进入房间的总热量,冷负荷:是为了维持一定的室内热湿环境所需要的在单位时间内从室内除去的热量(包括显热量和潜热量)。热负荷是为了维持一定室内热湿环境所需要的在单位时间内向室内加入的热量。湿负荷:是指维持一定的室内湿环境需要的在单位时间内排除的水分。得热量与冷负荷之间的关系:得热量的对流部分进入室内立刻成为瞬时冷负荷,而得热量的辐射部分首先会传到室内各表面,提高这些表面的温度,当这些表面的温度高于空气温度时,再以对流方式传给室内空气,成为空气冷负荷,因此在多数情况下,冷负荷并不等于得热量,只有在室内各表面温差很
小,热源只有对流散热时,冷负荷=得热量。冷负荷与得热量之间存在着相位差和幅度差,其差值取决于房间结构,围护结构的热工特性和热源特性。它们之间的对应关系可用公式(4-58第四章58式)来表示。
4.用谐波反应法计算传递的热量,是建立在不稳定传热基础上,即室外扰量(综合温度tz)大体上呈周期性变化作用于围护结构,使围护结构从外层表面逐层的跟着波动,且这种波动是由外向内逐渐衰减和延迟,这种简谐运动的周期函数可用正弦(或余弦)函数项的级数表达,将其变换为付立叶展开式,即将随时时变化的扰量函数分解为简单的多阶正弦函数的组合,再将其n阶谐波作用下的响应直接叠加,即可求得已知室温和外扰随时间变化条件下的传热量。
冷负荷系数法(反应系数法)求解问题的基本思路是:将时间连续变化的扰量曲线离散为按时间序列分布的单元扰量,再求解出板壁围护结构热力系统对单位单元扰量的反应(即反应系数),最后,利用求得反应系数通过叠加积分计算出围护结构的逐时传热得热量。
这两种方法从工程简化算法上都是把扰量通过围护结构形成的瞬间冷负荷表述成瞬时冷负荷温差或瞬时冷负荷温度的函数,而不考虑与其他围护结构和热源之间的相互影响。但在应用条件上,谐波法是在室温条件一定时,外扰随时间变化条件下计算其传热量,当室外气象条件在整个时间过程中具有随机性,特别是当室内温湿度环境也呈随机性变化时,不便采用谐波法,而多采用反应系数法,因此后一种方法能适用于建筑物的全年逐时(8760h)负荷计算和能耗分析,而谐 波法适用于一般负荷计算。
5.应设在靠室内侧,因为外侧气候变化大,易使空气间层受潮或凝结水粒,且由于水的导热系数比空气的导热系数大得多,所以设在外侧将会带走更多的室内热量。
6.因空气的热阻很小(0.03w/m·k)而水的导热阻相对很大(0.58w/m·k)因此一旦内墙面结露就会大大增加墙体向外的传热。
7.水自然蒸发前后过程的热负荷相等,因为室内水分是通过吸收空气中的显热蒸发的,没有其他的加热热源,也就是说蒸发过程是一个绝热过程,室内空气的含湿量增加(或称为等焓过程)此时,只不过是把部分显热负荷转化为潜热负荷。
8.因外遮阳可反射部分阳光,吸收部分阳光和透过部分阳光,其中只有透过部分阳光会达到窗玻璃外表面,并部分可能变成了冷负荷,而内遮阳除了反射部分阳光外,吸收和透过部分的阳光均形成了室内冷负荷,只是其得热量的峰值有所延迟和衰减。
第五章 人体对热湿环境的反应
1.人的热舒适主要与室内空气的温度,相对 湿度,气流速度以及围护结构内表面及其它物体表面的温度有关,同时还与人体的活动量、衣着以及年龄等有直接关系。
2.不对。当人体处于热平衡状态,即但是
,此时体温可维持正常,这只是人生存的基本条件,
,也就是说,人们会遇到各种不同的热平衡,然而只有那种使人按正常比例散热的热平衡
才是舒适的。
3.人体的散热量在一定环境温度范围内可视为常数。但随着环境空气温度的不同,人体向环境散热量中显热和潜热的比例是随环境温度变化的。环境空气温度越高,人体的显热散热量就少,潜热散热量越多,当环境空气温度达到或超过人体体温时,人体向外界的散热形式就全部变成了蒸发潜热散热。
4.体温调节的主要功能是将人体的核心温度维持在一个适合于生存的较窄的范围内,主要靠神经调节和体液调节来实现,调节体温的中枢主要是下丘脑,下丘脑前部的作用是调动人体的散热功能,下丘脑的后部执行着抵御寒冷的功能,其调节方法包括调节皮肤表层的血流量,调节排汗量和提产热量。
5.“热感觉”是人对周围环境是“冷”还是“热”的主观描述,尽管人们常评价房间的“冷”和“暖”,但实际上人是不能直接感觉到环境的温度的,只能感觉到位于他自己皮肤表面下的神经末梢的温度。热舒适:在ASHRAE Standard 55-1992中定义为对环境表示满意的意识状态。Fanger等人认为“热舒适”是指人体处于不冷不热的“中性”状态,即认为“中性”的热感觉就是热舒适。
6.热感觉并不仅仅是由冷热刺激的存在造成的,而与刺激的延续时间以及人体原有的热状态都有关,人体的冷、热感受器对环境有显著的适应性。这主要取决于皮肤温度和人体的核心温度;影响热舒适的因素除了上面给出波肤温度和核心温度外还有一些其他物理因素影响热舒适,即空气温度、垂直温差,吹风感以及人的年龄、性别、季节、人种等。其评价指标分别为热舒适(TCV)分:舒适、稍不舒适、不舒适、很不舒适、不可忍受5个指标;热感觉(TSV)分:热、暖、稍暖、正常、稍凉、凉、冷7个指标。
7.M-W=fdhc(tcl-ta)+3.96×10fa[(tcl+273)-(
4
-84
-2
+273)]+3.05[5.733-0.007(M-W)-Pa]+0.42(M-W-5.82)+1.73×10M(5.876-Pa)+0.0014M(34-ta)