参考答案
1.C 2. B 3.C 4.C 5.C 6. A 7.B 8 D 9.D 10.B 11.A 12.A 13.
1 14. 5 15.-1 16.(1) ①③?②④ (2) ②③?①④ 817.左?|1?cosx|?|1?cosx|?2cosx=右,
|sinx||sinx||sinx|?2cosx2cosx??,sinx?0,2k????x?2k??2?|sinx|sinx(k?Z).
18.可先把y?tanx的图像上所有点向右平移把y?tan(x???个单位,得到y?tan(x?)的图像,再
66?6,从而得到)图像上的所有点的横坐标伸长到原来的2倍(纵坐标不变)
1?y?tan(x?)的图像。
262(sin2??cos2?)?sin?cos??cos2?19.2?sin?cos??cos??
sin2??cos2?22sin2??sin?cos??cos2?2tan2??tan??1? = 222sin??cos?1?tan?9333??12?(?)2?(?)?1228444?? =
329251?(?)1?41620.f(?sinx)?3f(sinx)?4sinxcosx ① 得f(sinx)?3f(?sinx)??4sinxcosx ②
由3?①-②,得8f(sinx)?16sinx?cosx, 故f(x)?2x1?x2. (2)对0?x?1,将函数f(x)?2x1?x2的解析式变形,得
22f(x)?2x2(1?x2)?2?x4?x2=2?(x?)?1212,当x?时,fmax?1. 4221.
11sinx?siny??sinx??siny代入?中,得
3312111???siny?(1?sin2y)?sin2y?siny??(siny?)2?
33212214?1?sinx?1????sinx?
33312又siny??sinx,且?1?siny?1???siny?1
33
11124??min??()??,?max??(?)?
2123922.解:由f(x)是偶函数,得f(-x)= f(-x).
即: sin(??x??)?sin(?x??). 所以-cos?sin?x?cos?sin?x
对任意x都成立,且??0,所以得cos?=0.依题设0????,所以解得???23?3?3?由f(x)的图象关于点M对称,得f(?x)??f(?x).取x=0,得f()=-
4443?3?f(),所以f()=0. 44,
3?3???3??)?sin(?)?cos.44243??3????cos?0,又??0,得??k?,k?0,1,2?.4422???(2k?1),k?0,1,2,?322??当k?0时,??,f(x)?sin(x?)在[0,]上是减函数;3322?f(当k?1时,??2,f(x)?sin(2x?当k?2时,??
?)在[0,]上是减函数;22?10??,f(x)?sin(?x?)在[0,]上不是单调函数.3222所以,综合得??或??2.3