当0<a≤4时,∵4﹣a≥0 ∴当x=0时,运费最少; 当4<a<6时,∵4﹣a<0 ∴当x=240时,运费最少.
所以:当0<a≤4时,A城化肥全部运往D乡,B城运往C城240吨,运往D乡60吨,运费最少;
当4<a<6时,A城化肥全部运往C乡,B城运往C城40吨,运往D乡260吨,运费最少.
【点评】本题考查了二元一次方程组及一次函数的应用.根据题意列出一次函数解析式是关键.注意到(3)需分类讨论.
28.(10.00分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S. (1)求点D坐标.
(2)求S关于t的函数关系式.
(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.
【分析】(1)在Rt△BOC中,OB=3,sin∠CBO==,设CO=4k,BC=5k,根据
BC2=CO2+OB2,可得25k2=16k2+9,推出k=1或﹣1(舍弃),求出菱形的边长即可解决问题;
(2)①如图1中,当0≤t≤2时,直线l扫过的图象是四边形CCQP,S=4t.②如图2中,当2<t≤5时,直线l扫过的图形是五边形OCQTA.分别求解即可解决问题;
(3)分三种情形分解求解即可解决问题;
【解答】解:(1)在Rt△BOC中,OB=3,sin∠CBO==∵BC2=CO2+OB2, ∴25k2=16k2+9, ∴k=1或﹣1(舍弃), BC=5,OC=4,
∵四边形ABCD是菱形, ∴CD=BC=5, ∴D(5,4).
,设CO=4k,BC=5k,
(2)①如图1中,当0≤t≤2时,直线l扫过的图象是四边形CCQP,S=4t.
②如图2中,当2<t≤5时,直线l扫过的图形是五边形OCQTA.
S=S梯形OCDA﹣S△DQT=×(2+5)×4﹣×(5﹣t)×(5﹣t)=﹣t2+
t﹣.
(3)如图3中,①当QB=QC,∠BQC=90°,Q(,). ②当BC=CQ′,∠BCQ′=90°时,Q′(4,1); ③当BC=BQ″,∠CBQ″=90°时,Q″(1,﹣3);
综上所述,满足条件的点Q坐标为(,)或(4,1)或(1,﹣3). 【点评】本题考查四边形综合题、菱形的性质、等腰直角三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建方程解决问题,属于中考压轴题.