2018年广东省中考数学试题(含答案解析)-全新整理 下载本文

∴阴影部分的面积=×2×4﹣(4﹣π)=π. 故答案为π.

【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.

16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=

(x>0)上,点B1的坐标为(2,

0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为 (2,0) .

【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.

【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=OC=OB1+B1C=2+a,A2(2+a,∵点A2在双曲线y=∴(2+a)?解得a=

a=

a).

a,

(x>0)上, ,

﹣1(舍去),

﹣1,或a=﹣

∴OB2=OB1+2B1C=2+2∴点B2的坐标为(2

﹣2=2

,0);

b,

作A3D⊥x轴于点D,设B2D=b,则A3D=OD=OB2+B2D=2

+b,A2(2

+b,

b).

∵点A3在双曲线y=∴(2

+b)?

+

b=

(x>0)上, ,

﹣=2

(舍去), ,

解得b=﹣,或b=﹣﹣2

+2

∴OB3=OB2+2B2D=2

∴点B3的坐标为(2,0);

,0)即(4,0);

同理可得点B4的坐标为(2…,

∴点Bn的坐标为(2∴点B6的坐标为(2故答案为(2

,0), ,0).

,0).

【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点Bn的规律是解题的关键.

三、解答题(一)

17.(6分)计算:|﹣2|﹣20180+()﹣1

【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案. 【解答】解:原式=2﹣1+2 =3.

【点评】此题主要考查了实数运算,正确化简各数是解题关键.

18.(6分)先化简,再求值:

?

,其中a=

【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算. 【解答】解:原式=

?

=2a, 当a=

时,

=

原式=2×

【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.

19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,

(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)

(2)在(1)条件下,连接BF,求∠DBF的度数.

【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可; (2)根据∠DBF=∠ABD﹣∠ABF计算即可; 【解答】解:(1)如图所示,直线EF即为所求;

(2)∵四边形ABCD是菱形,

∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C. ∴∠ABC=150°,∠ABC+∠C=180°, ∴∠C=∠A=30°, ∵EF垂直平分线线段AB,

∴AF=FB,

∴∠A=∠FBA=30°,

∴∠DBF=∠ABD﹣∠FBE=45°.

【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.

20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等. (1)求该公司购买的A、B型芯片的单价各是多少元?

(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片? 【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;

(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.

【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条, 根据题意得:解得:x=35,

经检验,x=35是原方程的解, ∴x﹣9=26.

答:A型芯片的单价为26元/条,B型芯片的单价为35元/条. (2)设购买a条A型芯片,则购买(200﹣a)条B型芯片, 根据题意得:26a+35(200﹣a)=6280, 解得:a=80.

答:购买了80条A型芯片.

【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.

21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的

=