A.30° B.40° C.50° D.60°
【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.
【解答】解:∵∠DEC=100°,∠C=40°, ∴∠D=40°, 又∵AB∥CD, ∴∠B=∠D=40°, 故选:B.
【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.
9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是( )
A.m< B.m≤ C.m> D.m≥
【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可. 【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根, ∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0, ∴m<. 故选:A.
【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.
10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( )
A. B. C. D.
【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可. 【解答】解:分三种情况: ①当P在AB边上时,如图1, 设菱形的高为h, y=AP?h,
∵AP随x的增大而增大,h不变, ∴y随x的增大而增大, 故选项C不正确;
②当P在边BC上时,如图2, y=AD?h, AD和h都不变,
∴在这个过程中,y不变, 故选项A不正确;
③当P在边CD上时,如图3, y=PD?h,
∵PD随x的增大而减小,h不变, ∴y随x的增大而减小,
∵P点从点A出发沿在A→B→C→D路径匀速运动到点D, ∴P在三条线段上运动的时间相同, 故选项D不正确; 故选:B.
【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.
二、填空题(共6小题,每小题3分,满分18分)
11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是 50° . 【分析】直接利用圆周角定理求解.
【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°. 故答案为50°.
【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
12.(3分)分解因式:x2﹣2x+1= (x﹣1)2 . 【分析】直接利用完全平方公式分解因式即可. 【解答】解:x2﹣2x+1=(x﹣1)2.
【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.
13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= 2 .
【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.
【解答】解:根据题意知x+1+x﹣5=0, 解得:x=2, 故答案为:2.
【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.
14.(3分)已知
+|b﹣1|=0,则a+1= 2 .
【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案. 【解答】解:∵
+|b﹣1|=0,
∴b﹣1=0,a﹣b=0, 解得:b=1,a=1, 故a+1=2. 故答案为:2.
【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a,b的值是解题关键.
15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为 π .(结果保留π)
【分析】连接OE,如图,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD﹣S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积. 【解答】解:连接OE,如图,
∵以AD为直径的半圆O与BC相切于点E, ∴OD=2,OE⊥BC,
易得四边形OECD为正方形,
∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣
=4﹣π,