关于天津大学第五刘俊吉物理化学课后习题答案全 下载本文

= 26.7085×(373.15-1373.15)J?mol?1

+1×6.0151×(373.152-1373.152)×10-3J?mol?1

2-1×0.74925×(373.153-1373.153)×10-6J?mol?1

3 = -26708.5J?mol?1-5252.08J?mol?1+633.66J?mol?1

=31327J?mol?1=31.327kJ?mol?1 19983×31.327=626007kJ

2-17 单原子理想气体A与双原子理想气体B的混合物共5mol,摩尔分数yB=0.4,始态温度T1=400 K,压力p1=200 kPa。今该混合气体绝热反抗恒外压p=100 kPa膨胀到平衡态。求末态温度T2及过程的W,△U,△H。

解:先求双原子理想气体B的物质的量:n(B)=yB×n=0.4×5 mol=2mol;则

单原子理想气体A的物质的量:n(A)=(5-2)mol =3mol 单原子理想气体A的CV,m?3R,双原子理想气体B的CV,m?5R

22过程绝热,Q=0,则 △U=W 于是有 14.5T2=12T1=12×400K 得 T2=331.03K

2-18 在一带活塞的绝热容器中有一绝热隔板,隔板的两侧分别为2mol,0℃的单原子理想气体A及5mol ,100℃的双原子理想气体B,两气体的压力均为100 kPa 。活塞外的压力维持 100kPa不变。

今将容器内的绝热隔板撤去,使两种气体混合达到平衡态。求末态温度T及过程的W,△U。

解:单原子理想气体A的Cp,m?5R,双原子理想气体B的Cp,m?7R

22因活塞外的压力维持 100kPa不变,过程绝热恒压,Q=Qp=△H=0,于是有

于是有 22.5T=7895.875K 得 T=350.93K

2-19在一带活塞的绝热容器中有一固定绝热隔板,隔板活塞一侧为2mol,0℃的单原子理想气体A,压力与恒定的环境压力相等;隔板的另一侧为6mol ,100℃的双原子理想气体B,其体积恒定。

今将绝热隔板的绝热层去掉使之变成导热隔板,求系统达平衡时的T及过程的W,△U。

解:过程绝热,Q=0,△U=W,又因导热隔板是固定的,双原子理想气体B体积始终恒定,所以双原子理想气体B不作膨胀功,仅将热量传给单原子理想气体A,使A气体得热膨胀作体积功,因此,W=WA,故有

△U=W=WA

得 20×T=6963K 故 T=348.15K

2-20 已知水(H2O,l)在100℃的饱和蒸气压ps=101.325 kPa,在此温度、压力下水的摩尔蒸发焓?vapHm?40.668kJ?mol?1。求在100℃,101.325 kPa 下使1kg水蒸气全部凝结成液体水时的Q,W,△U及△H。设水蒸气适用理想气体状态方程。

解:过程为 1kgH2O(g),1000C,101.325kPa1kgH2O(l),1000C,101.325kPa

2-17今有温度分别为80℃、40℃及10℃的三种不同的固体物质A、B及C。若在与环境绝热条件下,等质量的A和B接触,热平衡后的温度为57℃;等质量的A与C接触,热平衡后的温度为36℃。若将等质量的B、C接触,达平衡后系统的温度应为多少?

解:设A、B、C的热容各为cA、cB、cC,于是有 mcA(57-80)+m cB(57-40)=0 (1) mcA(36-80)+ mcC(36-10)=0 (2) mcB(t-40)+m cC(t-10)=0 (3) 得:cA(57-80)= - cB(57-40) (4)

cA(36-80)= - cC(36-10) (5) cB(t-40)+ cC(t-10)=0 (6) 由式(4)除以式(5),解得 cB =0.7995cC 将上式代入式(6)得

0.7995cC(t-40)+ cC(t-10)=0 (7) 方程(7)的两边同除以cC,得

0.7995×(t-40)+ (t-10)=0 (8) 解方程(8),得 t=23.33℃

结果表明,若将等质量的B、C接触,达平衡后系统的温度应为23.33℃。

2-21 求1mol N2(g)在300K恒温下从2 dm3 可逆膨胀到40 dm3时的体积功Wr。

(1)假设N2(g)为理想气体;

(2)假设N2(g)为范德华气体,其范德华常数见附录。 解:(1)假设N2(g)为理想气体,则恒温可逆膨胀功为

Wr??nRTln(V2/V1)= -1×8.3145×300×ln(40÷2)J = - 7472J =7.472 kJ

(2)查附录七,得其范德华常数为

a?140.8?10?3Pa?1?m?6?mol2;b?39.13?10?6m?3?mol?1

2-22 某双原子理想气体1mol 从始态350K,200 kPa经过如下四个不同过

程达到各自的平衡态,求各过程的功W。

(1)恒温可逆膨胀到50 kPa;

(2)恒温反抗50 kPa恒外压不可逆膨胀; (3)绝热可逆膨胀到50kPA;

(4)绝热反抗50 kPa恒外压不可逆膨胀。 解:(1)恒温可逆膨胀到50 kPa: (2)恒温反抗50 kPa恒外压不可逆膨胀: (3)绝热可逆膨胀到绝热,Q=0,

(4)绝热反抗50 kPa恒外压不可逆膨胀 绝热,Q=0, W??U 上式两边消去nR并代入有关数据得 3.5T2=2.75×350K 故 T2=275K

2-23 5 mol 双原子理想气体1mol 从始态300K,200 kPa,先恒温可逆膨胀到压力为50kPa,再绝热可逆压缩末态压力200 kPa。求末态温度T及整个过程的Q,W,△U及△H。 解:整个过程如下 恒温可逆膨胀过程:

因是理想气体,恒温,△U恒温=△H恒温=0 绝热可逆压缩:Q=0,故 故整个过程:

W=Wr+W绝= (-17.29+15.15)kJ=2.14 kJ △U=△Ur+△U绝=(0+15.15)=15.15kJ

p2?50kPa: T2????p???1?R/Cp,m?50?103??T1???200?103????R/(7R/2)?350K?235.53K