冀教版2020年中考数学模拟试题及答案(含详解) (11) 下载本文

6.(3.00分)将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是( )

A.庆 B.力 C.大 D.魅

【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.

【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形, “建”与“力”是相对面, “创”与“庆”是相对面, “魅”与“大”是相对面. 故选:A.

【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.

7.(3.00分)在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是( )

A. B. C. D.

【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.

【解答】解:分两种情况讨论:

①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限;

②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数

第9页(共28页)

的图象在第二、四象限. 故选:B.

【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.

8.(3.00分)已知一组数据:92,94,98,91,95的中位数为a,方差为b,则a+b=( )

A.98 B.99 C.100 D.102

【分析】首先求出该组数据的中位数和方差,进而求出答案.

【解答】解:数据:92,94,98,91,95从小到大排列为91,92,94,95,98,处于中间位置的数是94,

则该组数据的中位数是94,即a=94,

该组数据的平均数为[92+94+98+91+95]=94,

其方差为[(92﹣94)2+(94﹣94)2+(98﹣94)2+(91﹣94)2+(95﹣94)2] =6,所以b=6 所以a+b=94+6=100. 故选:C.

【点评】本题考查了中位数和方差,关于方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].

9.(3.00分)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=( )

A.30° B.35° C.45° D.60°

【分析】作MN⊥AD于N,根据平行线的性质求出∠DAB,根据角平分线的判定

第10页(共28页)

定理得到∠MAB=∠DAB,计算即可. 【解答】解:作MN⊥AD于N, ∵∠B=∠C=90°, ∴AB∥CD,

∴∠DAB=180°﹣∠ADC=70°,

∵DM平分∠ADC,MN⊥AD,MC⊥CD, ∴MN=MC, ∵M是BC的中点, ∴MC=MB,

∴MN=MB,又MN⊥AD,MB⊥AB, ∴∠MAB=∠DAB=35°, 故选:B.

【点评】本题考查的是角平分线的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.

10.(3.00分)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论: ①二次函数y=ax2+bx+c的最小值为﹣4a; ②若﹣1≤x2≤4,则0≤y2≤5a; ③若y2>y1,则x2>4;

④一元二次方程cx2+bx+a=0的两个根为﹣1和 其中正确结论的个数是( )

第11页(共28页)

A.1 B.2 C.3 D.4

【分析】利用交点式写出抛物线解析式为y=ax2﹣2ax﹣3a,配成顶点式得y=a(x﹣1)2﹣4a,则可对①进行判断;计算x=4时,y=a?5?1=5a,则根据二次函数的性质可对②进行判断;利用对称性和二次函数的性质可对③进行判断;由于b=﹣2a,c=﹣3a,则方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,然后解方程可对④进行判断.

【解答】解:抛物线解析式为y=a(x+1)(x﹣3), 即y=ax2﹣2ax﹣3a, ∵y=a(x﹣1)2﹣4a,

∴当x=1时,二次函数有最小值﹣4a,所以①正确; 当x=4时,y=a?5?1=5a,

∴当﹣1≤x2≤4,则﹣4a≤y2≤5a,所以②错误;

∵点C(1,5a)关于直线x=1的对称点为(﹣2,﹣5a), ∴当y2>y1,则x2>4或x<﹣2,所以③错误; ∵b=﹣2a,c=﹣3a,

∴方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,

整理得3x2+2x﹣1=0,解得x1=﹣1,x2=,所以④正确. 故选:B.

【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.

二、填空题(本大题共8小题,每小题3分,共24分)

第12页(共28页)