21【解析】(1)对f(x)求导得
2x?ex?x2?exx(2?x)f?(x)?a??a?(ex)2ex,
设直线
, 21与曲线y?f(x)切于点P(x0,y0),则 ?1ax0y?xx?0?xe?ee0??1?a?x0(2?x0)?ex0?e解得a?x?1.所以a的值为1.
0(2)记函数
,下面考察函数y?F(x)的符号.对1x21F(x)?f(x)?(x?)?x?x?,x?0xex.当x?2时F?(x)?0恒成立. x(2?x)1F?(x)??1?2,x?0xex函数y?F(x)求导得当0?x?2时,从而
, x?(2?x)2x(2?x)?[]?12. x(2?x)11111F?(x)??1?2?x?1?2?1?1?2??2?0exxexxx∴F?(x)?0在(0,??)上恒成立,故y?F(x)在(0,??)上单调递减. ∵
,∴F(1)?F(2)?0. 143F(1)??0,F(2)?2??0ee2又曲线y?F(x)在[1,2]上连续不间断,所以由函数的零点存在性定理及其单调性知 使F(x)0∴x?(0,x),F(x)?0;x?(x,??),F(x)?0.∴?惟一的x0?(1,2),
000??1x?,0?x?x01??xg(x)?min{f(x),x?}??x?x2,x?x0??ex1?2x?-cx,0?x?x0??xh(x)?g(x)?cx2??2?x?cx2,x?x0??ex∴
,从而
1?1??2cx,0?x?x0??x2h?(x)???x(2?x)?2cx,x?x0??ex由函数h(x)?g(x)?cx2为增函数,且曲线y?h(x)在
(0,??)上连续不断知h?(x)?0在(0,x0),(x0,??)上恒成立.
①当x?x时,x(2?x)0ex立. 记
?2cx?0在(x,??)上恒成立,即
02?x在(x0,??)上恒成2c?xe,则,当x变化时,u?(x),u(x)变化情况如下2?xx?3u(x)?x,x?x0u?(x)?x,x?x0ee表:
x (x0,3) 3 (3,??) ? u?(x) u(x) ∴
? 0 极小值 u(x)min?u(x)极小1. ?u(3)??3e故“
2?x在(x0,??)上恒成立”只需1,即1. 2c?x2c?u(x)min??3c??3ee2e,当c?0时,h?(x)?0在(0,x)上恒成立. 10h?(x)?1?2?2cxx②当0?x?x时,
0综合(1)(2)知,当
1时,函数h(x)?g(x)?cx2为增函数. c??32e故实数c的取值范围是
1.
(??,?3]2e请考生在第(22),(23),(24)题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.
(22)选修4?1:几何证明选讲
(Ⅰ)设?ABE外接圆的圆心为O?, 解:连结BO?并延长交圆O?于G点,连结GE,则?BEG?90?,?BAE??BGE.
······················· 2分 因为AF平分∠BAC,所以BF=FC,所以?FBE??BAE, ·
BDAO'OEFCG所以?FBG??FBE??EBG??BGE??EBG?180???BEG?90?,
····································· 5分 所以O?B?BF,所以BF是?ABE外接圆的切线. ·(Ⅱ)连接DF,则DF?BC,所以DF是圆O的直径, 因为BD2?BF2?DF2,DA2?AF2?DF2,
······························································· 7分 所以BD2?DA2?AF2?BF2. ·
因为AF平分∠BAC,所以?ABF∽?AEC,
所以ABAF,所以AB?AC?AE?AF?(AF?EF)?AF,
?AEAC因为?FBE??BAE,所以?FBE∽?FAB,从而BF2?FE?FA,所以AB?AC?AF2?BF2,
····························································· 10分所以BD2?DA2?AB?AC?6. ·(23)选修4?4;坐标系与参数方程 试题解析:(1)
33
(0,0),(,)22 (2) C:???(??R,??0,0????)
1A(2sin?,?),B(23cos?,?)
AB?|2sin??23cos?|?4|sin(??)|3当
?
5?时,|AB|max?4 ??6考点:极坐标方程化为直角坐标方程, 三角函数性质
(24)选修4?5:不等式选讲 解:(Ⅰ)由|x?3|?2x?1得,
?x??3,???(x?3)?2x?1, ·································································· 2分 或x??3,???x?3?2x?1,解得x?2.
·························································································· 5分 依题意m?2. ·(Ⅱ)因为
11?11?x?t?x?…?x?t???x???t??t?tt?tt?,
当且仅当
···························································· 7分 时取等号, ·1???x?t??x???0t??(t?0)有实数根, 1|x?t|?|x?|?2t因为关于x的方程
所以
······················································································· 8分 . ·1t??2t, 1t?…2t另一方面,
所以
························································································· 9分 , 1t??2t10分
所以t?1或t??1.