离去,乙参与工作,问还需几天完成?
知能点5:若干应用问题等量关系的规律
(1)和、差、倍、分问题 此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。 增长量=原有量×增长率 现在量=原有量+增长量 (2)等积变形问题
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式 V=底面积×高=S·h=?rh
2
②长方体的体积 V=长×宽×高=abc
22.某粮库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的
23.一个装满水的内部长、宽、高分别为300毫米,300毫米和80?毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,. ?≈3.14)
24.长方体甲的长、宽、高分别为260mm,150mm,325mm,长方体乙的底面积为130×130mm,又知甲的体积是乙的体积的2.5倍,求乙的高?
知能点6:行程问题
基本量之间的关系: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间 (1)相遇问题 (2)追及问题 快行距+慢行距=原距 快行距-慢行距=原距
(3)航行问题 顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.
25. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,
2
5。问每个仓库各有多少粮食? 7最新优质教育word文档
每小时行140公里。
(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? 此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。
26. 甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少?
27. 某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。A、C两地之间的路程为10千米,求A、B两地之间的路程。
28.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.
29.已知甲、乙两地相距120千米,乙的速度比甲每小时快1千米,甲先从A地出发2小时后,乙
最新优质教育word文档
从B地出发,与甲相向而行经过10小时后相遇,求甲乙的速度?
30.一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。问:?若已知队长320米,则通讯员几分钟返回??若已知通讯员用了25分钟,则队长为多少米?
31.一架飞机在两个城市之间飞行,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的飞行路程?
32.一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离。
知能点7:数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c。然后抓住数字间或新数、原数之间的关系找等量关系列方程.
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。
33. 一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数.
34. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数
注意:虽然我们分了几种类型对应用题进行了研究,但实际生活中的问题是千变万化的,远不止这几类问题。因此我们要想学好列方程解应用题,就要学会观察事物,关心日常生产生活中的各种问题,如市场经济问题等等,要会具体情况具体分析,灵活运用所学知识,认真审题,适当设元,寻找等量关系,从而列出方程,解出方程,使问题得解
最新优质教育word文档
答案
1.
[分析]通过列表分析已知条件,找到等量关系式 进价 60元 折扣率 8折 标价 X元 优惠价 80%X 利润率 40% 等量关系:商品利润率=商品利润/商品进价
80%x?6040?
6010080?105?84(元), 解之:x=105 优惠价为80%x?100解:设标价是X元,2.
[分析]探究题目中隐含的条件是关键,可直接设出成本为X元
进价 X元 折扣率 8折 标价 (1+40%)X元 优惠价 80%(1+40%)X 利润 15元 等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15 解:设进价为X元,80%X(1+40%)—X=15,X=125 答:进价是125元。 3.B
4.解:设至多打x折,根据题意有 答:至多打7折出售.
5.解:设每台彩电的原售价为x元,根据题意,有 10[x(1+40%)×80%-x]=2700,x=2250 答:每台彩电的原售价为2250元. 6.解:方案一:获利140×4500=630000(元)
方案二:获利15×6×7500+(140-15×6)×1000=725000(元) 方案三:设精加工x吨,则粗加工(140-x)吨. 依题意得
1200x?800×100%=5% 解得x=0.7=70%
800x140?x?=15 解得x=60 616 获利60×7500+(140-60)×4500=810000(元) 因为第三种获利最多,所以应选择方案三. 7.解:(1)y1=0.2x+50,y2=0.4x.
(2)由y1=y2得0.2x+50=0.4x,解得x=250.
即当一个月内通话250分钟时,两种通话方式的费用相同. (3)由0.2x+50=120,解得x=350 由0.4x+50=120,得x=300 因为350>300 故第一种通话方式比较合算.
最新优质教育word文档