µãµÄ¸öÊý¡£¿¼ÂÇʵÑé2.1Öеĺ¯Êý»òÑ¡ÔñÆäËûÄãÓÐÐËȤµÄº¯Êý¡£
ʵÑéÒªÇó£º
£¨1£©Ëæ½Úµã¸öÊýÔö¼Ó£¬±È½Ï±»±Æ½üº¯ÊýºÍÑùÌõ²åÖµº¯ÊýÎó²îµÄ±ä»¯Çé¿ö¡£·ÖÎöËùµÃ½á¹û²¢ÓëÀ¸ñÀÊÈÕ¶àÏîʽ²åÖµ±È½Ï(¿ÉÒÔÓÃMATLABµÄº¯Êý¡°spline¡±×÷´Ëº¯ÊýµÄÈý´ÎÑùÌõ²åÖµ£¬È¡n=10¡¢20£¬·Ö±ð»³ö²åÖµº¯Êý¼°Ôº¯ÊýµÄͼÐÎ)¡£
£¨2£©ÑùÌõ²åÖµµÄ˼ÏëÊÇÔç²úÉúÓÚ¹¤Òµ²¿ÃÅ¡£×÷Ϊ¹¤ÒµÓ¦ÓõÄÀý×Ó¿¼ÂÇÈçÏÂÎÊÌ⣺ijÆû³µÖÆÔìÉÌÓÃÈý´ÎÑùÌõ²åÖµÉè¼Æ³µÃŵÄÇúÏߣ¬ÆäÖÐÒ»¶ÎµÄÊý¾ÝÈçÏ£º xk yk yk¡¯
ÒªÇó£ºi.×Ô¼º±à³Ì¼ÆË㣨ÓÃÈýÍ侨¡¢Èýת½Ç·½³Ì¾ù¿É£© ii.Ö÷º¯Êýmyspline(x,y,±ß½çÀàÐÍ£¬±ß½çÖµ£¬xi ) ÆäÖУºx ½Úµã y ½ÚµãÉϵĺ¯ÊýÖµ xi δ֪½Úµã ·µ»Ø£ºS(xi)
iii.Èý¶Ô½Ç·½³Ì×éÓÃ×·¸Ï·¨Çó½â(ÊéP160)¡£
ʵÑé2.3£º(һά²åÖµµÄÓ¦Ó᪻ͼ) »Äã×Ô¼ºµÄÊÖµÄÐÎ×´£¬ÔÚMATLABÖÐÊäÈë
figure('position',get(0,'screensize')) axes('position',[0 0 1 1]) [x,y]=ginput;
0 0.0 0.8 1 2 3 4 5 6 7 8 9 10 0.2 0.79 1.53 2.19 2.71 3.03 3.27 2.89 3.06 3.19 3.29 ½«ÄãµÄÊÖÕÆÕÅ¿ª·ÅÔÚ¼ÆËã»úÆÁÄ»ÉÏ£¬È»ºóʹÓüÆËã»úÊó±êѡȡһϵÁе㹴ÀÕ³öÊÖµÄÂÖÀª£¬°´»Ø³µ¼ü½áÊøginput¹ý³Ì£¬ÕâÑù¾Í»ñµÃÁËһϵÁÐÄãµÄÊÖÕÆÍâÐÎÊý¾Ýµã(x,y)¡£Ò²¿ÉÒÔÕâÑù»ñµÃÊý¾Ýµã(x,y)£¬ÏȰÑÊÖ·ÅÔÚÒ»ÕŰ×Ö½ÉÏ£¬²¢Óñʻ³öËüµÄÂÖÀªÏߣ¬È»ºó½«Ö½ÌùÔÚ¼ÆËã»úÆÁÄ»ÉÏ£¬Í¸¹ýÖ½ÄÜ¿´µ½Æ½ÃæÉϵÄÊó±ê£¬²¢Í¨¹ýginput¼Ç¼ÏÂÂÖÀªÉϵĵ㡣
½«xºÍy×ø±êÖµ¿´×÷ÊÇÁ½¸ö¶ÀÁ¢±äÁ¿µÄº¯Êý£¬¶ÀÁ¢±äÁ¿µÄȡֵΪ´Ó1µ½¼Ç¼µÄµãµÄÊýÄ¿¡£ÀûÓÃMATLABµÄ²åÖµº¯Êý½øÐвåÖµ£¬²¢»³öÄãµÄÊÖÕÆÍâÐÎÂÖÀª¡£
˼¿¼Ì⣺£¨¶þά²åÖµ£©
1. ÔÚÒ»ÇðÁêµØ´ø²âÁ¿¸ß³Ì£¬xºÍy·½Ïòÿ¸ô100ÃײâÒ»¸öµã£¬µÃ¸ß³ÌÊý¾ÝÈçÏ¡£ÊÔÓÃMATLABµÄ¶þά²åÖµº¯Êý¡°interp2¡±½øÐвåÖµ£¬²¢ÓÉ´ËÕÒ³ö×î¸ßµãºÍ¸ÃµãµÄ¸ß³Ì¡£ y x 100 200 300 400 100 636 697 624 478 200 698 712 630 478 300 680 674 598 412 400 662 626 552 334 2. »³öÉ½ÇøµØÃ²Í¼¡£
ÀûÓÃMATLABµÄpeaksº¯ÊýÉú³ÉÄ³É½ÇøµÄһЩµØµã¼°Æä¸ß¶ÈÈýάÊý¾Ý£¨µ¥Î»£ºm£©¡£ÃüÁî¸ñʽ£º[x,y,z]=peaks(n)£¬Éú³ÉµÄn½×¾ØÕóx,y,zΪ²âÁ¿µÄÉ½ÇøµØµãÈýάÊý¾Ý£¨n>=30£©¡£¸ù¾Ýpeaksº¯ÊýÉú³ÉµÄÊý¾Ý£¬ÀûÓÃMatlab¶þά²åÖµ»³ö¸ÃÉ½ÇøµÄµØÃ²Í¼ºÍµÈÖµÏßͼ(Ìáʾº¯Êý£ºinterp2¡¢meshgrid¡¢plot3µÈ)¡£
Ïà¹ØMATLABº¯ÊýÌáʾ£º plot(x,y) ×÷³öÒÔÊý¾Ý(x(i),y(i))Ϊ½ÚµãµÄÕÛÏßͼ£¬ÆäÖÐx,yΪͬ³¤¶ÈµÄÏòÁ¿ subplot(m,n,k) ½«Í¼Ðδ°¿Ú·ÖΪm*n¸ö×Óͼ£¬²¢Ö¸ÏòµÚk·ùͼ yi=interp1(x,y,xi) ¸ù¾ÝÊý¾Ý(x,y)¸ø³öÔÚxiµÄ·Ö¶ÎÏßÐÔ²åÖµ½á¹ûyi pp=spline(x,y) ·µ»ØÑùÌõ²åÖµµÄ·Ö¶Î¶àÏîʽ(pp)ÐÎʽ½á¹¹ pp=csape(x,y,¡®±ß½çÀàÐÍ¡¯,¡®±ß½çÖµ¡¯) Éú³É¸÷Öֱ߽çÌõ¼þµÄÈý´ÎÑùÌõ²åÖµ yi=ppval(pp,xi) ppÑùÌõÔÚxiµÄº¯ÊýÖµ ZI=interp2(x,y,z,xi,yi) x,xiΪÐÐÏòÁ¿£¬y,yiΪÁÐÏòÁ¿£¬zΪ¾ØÕóµÄË«ÏßÐÔ¶þά²åÖµ ZI=interp2(¡,'spline') ʹÓöþÔªÈý´ÎÑùÌõ²åÖµ ZI=griddata(x,y,z,xi,yi) x,y,z¾ùΪÏòÁ¿£¨²»±Øµ¥µ÷£©±íʾÊý¾Ý£¬xi,yiÎªÍø¸ñÏòÁ¿µÄÈý½ÇÐÎÏßÐÔ²åÖµ£¨²»¹æÔòÊý¾ÝµÄ¶þά²åÖµ£© 6
ʵÑéÈý º¯Êý±Æ½üÓëÇúÏßÄâºÏ
ʵÑé3.1£¨ÇúÏ߱ƽü·½·¨µÄ±È½Ï£©
ÎÊÌâÌá³ö£ºÇúÏßµÄÄâºÏºÍ²åÖµ£¬ÊDZƽüº¯ÊýµÄ»ù±¾·½·¨£¬Ã¿ÖÖ·½·¨¾ßÓи÷×ÔµÄÌØµãºÍÌØ¶¨µÄÊÊÓ÷¶Î§£¬Êµ¼Ê¹¤×÷ÖкÏÀíÑ¡Ôñ·½·¨ÊÇÖØÒªµÄ¡£
ʵÑéÄÚÈÝ£º¿¼ÂÇʵÑé2.1ÖеÄÖøÃûÎÊÌâ¡£ÏÂÃæµÄMATLAB³ÌÐò¸ø³öÁ˸ú¯ÊýµÄ¶þ´ÎºÍÈý´ÎÄâºÏ¶àÏîʽ¡£
x=-1:0.2:1;
y=1/(1+25*x.*x); xx=-1:0.02:1; p2=polyfit(x,y,2); yy=polyval(p2,xx); plot(x,y,¡¯o¡¯,xx,yy); xlabel(¡®x¡¯); ylabel(¡®y¡¯); hold on;
p3=polyfit(x,y,3); yy=polyval(p3,xx); plot(x,y,¡¯o¡¯,xx,yy); hold off;
Êʵ±ÐÞ¸ÄÉÏÊöMATLAB³ÌÐò£¬Ò²¿ÉÒÔÄâºÏÆäËûÄãÓÐÐËȤµÄº¯Êý¡£ ʵÑéÒªÇó£º
£¨1£©½«ÄâºÏµÄ½á¹ûÓëÀ¸ñÀÊÈÕ²åÖµ¼°ÑùÌõ²åÖµµÄ½á¹û±È½Ï¡£ £¨2£©¹éÄÉ×ܽáÊýֵʵÑé½á¹û£¬ÊÔ¶¨ÐÔµØËµÃ÷º¯Êý±Æ½ü¸÷ÖÖ·½·¨µÄÊÊÓ÷¶Î§£¬¼°Êµ¼ÊÓ¦ÓÃÖÐÑ¡Ôñ·½·¨Ó¦×¢ÒâµÄÎÊÌâ¡£
ʵÑé3.2£º£¨×îС¶þ³ËÄâºÏµÄ¾Ñ鹫ʽºÍÄ£ÐÍ£©
1.£¨ÒÑÖª¾Ñ鹫ʽ£©£ºÄ³À༲²¡·¢²¡ÂÊΪy?ºÍÄêÁä¶Îx(ÿÎåÄêΪһ¶Î£¬ÀýÈç0~5ËêΪµÚÒ»¶Î£¬6~10ËêΪµÚ¶þ¶Î¡¡)Ö®¼äÓÐÐÎÈçy?aeµÄ¾Ñé¹ØÏµ£¬¹Û²âµÃµ½µÄÊý¾Ý±íÈçÏ x 1 2 y 0.898 2.38 3 3.07 12 6.53 4 1.84 13 10.9 5 2.02 14 16.5 6 1.94 15 22.5 7 2.22 16 35.7 8 2.77 17 50.6 9 4.02 18 61.6 19 81.8 bxx y 10 4.76 11 5.46 ʵÑéÒªÇó£º bxy?ae£¨1£©ÓÃ×îС¶þ³Ë·¨È·¶¨Ä£ÐÍÖеIJÎÊýaºÍb(Ìáʾº¯Êý£ºlsqcurvefit£¬
lsqnonlin)¡£
bxy?ae£¨2£©ÀûÓÃMATLAB»³öÀëÉ¢Êý¾Ý¼°ÄâºÏº¯ÊýͼÐΡ£
7
£¨3£©ÀûÓÃMATLAB»³öÀëÉ¢µã´¦µÄÎó²îͼ£¬²¢¼ÆËãÏàÓ¦µÄ¾ù·½Îó²î¡£ 2£®£¨×îС¶þ³ËÄâºÏÄ£ÐÍδ֪£© ijÄêÃÀ¹ú½Î³µ¼Û¸ñµÄµ÷²é×ÊÁÏÈç±í£¬ÆäÖÐxi±íʾ½Î³µµÄʹÓÃÄêÊý£¬yi±íʾÏàÓ¦µÄƽ¾ù¼Û¸ñ£¬ÊµÑéÒªÇó£ºÊÔ·ÖÎöÓÃʲôÐÎʽµÄÇúÏßÀ´ÄâºÏ±íÖеÄÊý¾Ý£¬²¢Ô¤²âʹÓÃ4.5Äêºó½Î³µµÄƽ¾ù¼Û¸ñ´óÖÂΪ¶àÉÙ£¿ xi yi 1 2 3 4 5 6 7 8 9 10 2615 1943 1494 1087 765 538 484 290 226 204 ʵÑé3.3£¨Ñо¿×î¼Ñƽ·½±Æ½ü¶àÏîʽµÄÊÕÁ²ÐÔÖÊ£©
xʵÑéÄÚÈݺÍÒªÇó£ºÈ¡º¯Êýf(x)?e£¬ÔÚ[-1£¬1]ÉÏÒÔÀÕÈõ¶àÏîʽΪ»ùº¯Êý£¬
?(x)?f(x)?pn(x)¶ÔÓÚn?0,1,?,10¹¹Ôì×î¼Ñƽ·½±Æ½ü¶àÏîʽpn(x)£¬Áîn£¬½«?n(x)~xµÄÇúÏß»ÔÚÒ»¸öͼÉÏ¡£
ÁîEn?maxf(x)?pn(x)£¬»³öEn~nµÄÇúÏß¡£×ö³öEn~nÖ®¼äµÄ×îС¶þ³Ë
?1?x?1ÇúÏߣ¬ÄÜ·ñÌá³ö¹ØÓÚÊÕÁ²ÐԵIJ²⡣
˼¿¼ÌâÒ»£º£¨²¡Ì¬£©¿¼Âǽ«[0,1]30µÈ·Ö½Úµã£¬ÓöàÏîʽy?1?x???x5Éú³ÉÊý¾Ý£¬ÔÙÓÃpolyfitÇóÆä3´Î¡¢5´Î¡¢10´Î¡¢15´ÎÄâºÏ¶àÏîʽ£¬²¢·ÖÎöÎó²î²úÉúµÄÔÒò¡£
˼¿¼Ìâ¶þ£ºµ÷ÑÐMatlabÄâºÏ¹¤¾ßÏäµÄʹÓá£
Ïà¹ØMATLABº¯ÊýÌáʾ£º p=polyfit(x,y,k) ÓÃk´Î¶àÏîʽÄâºÏÏòÁ¿Êý¾Ý(x,y)£¬·µ»Ø¶àÏîʽµÄ½µÃÝϵÊý£¬µ±k>=n-1ʱ£¬ÊµÏÖ¶àÏîʽ²åÖµ£¬ÕâÀïnÊÇÏòÁ¿Î¬Êý 8