'.
∴PI=AB-BP-AI=6-x-1.5=∴Rt△PIO中,
9?x, ……………………(1分) 2981153……(1分) OP2?PI2?OI2?(32)2?(?x)2?18?x2?9x??x2?9x?244∵⊙P与⊙O外切,∴OP?x2?9x?153?x?y ……………………(1分) 4∴y=x?9x?21531?x?4x2?36x?153?x …………………………(1分) 42∵动点P在边AB上,⊙P经过点B,交线段PA于点E.∴定义域:0 9 2① 当E与点A不重合时,AE是⊙O的弦,OI是弦心距,∵AI=1.5,AE =3, ∴点E是AB 中点,BE?13AB?3,BP?PE?,PI?3, IO=32 22 OP?PI2?IO2?32?(32)2?27?33 ……………………(2分)② 当E与点A重合时,点P是AB 中点,点O是AC 中点,OP?∴OP?33或 19 BC? ……(2分) 229. 2闵行区 25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分) 如图,已知在Rt△ABC中,∠ACB = 90o,AC =6,BC = 8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合). (1)如果设BF = x,EF = y,求y与x之间的函数关系式,并写出它的定义域; (2)如果ED?2EF,求ED的长; (3)联结CD、BD,请判断四边形ABDC是否为直角梯形?说明理由. A ;. (第25题图) (备用图) C E D C F B A B '. 25.解:(1)在Rt△ABC中,AC?6,BC?8,?ACB?90 ∴AB?10.……………………………………………………………(1分) 过E作EH⊥AB,垂足是H, 易得:EH?341x,BH?x,FH?x.…………………………(1分) 55522222?3??1?在Rt△EHF中,EF?EH?FH??x???x?, ?5??5?∴y?10x(0?x?8).………………………………………(1分+1分) 5(2)取ED的中点P,联结BP交ED于点G ∵ED?2EF,P是ED的中点,∴EP?EF?PD. ∴∠FBE =∠EBP =∠PBD. ∵EP?EF,BP过圆心,∴BG⊥ED,ED =2EG =2DG.…………(1分) 又∵∠CEA =∠DEB, ∴∠CAE=∠EBP=∠ABC.……………………………………………(1分) 3又∵BE是公共边,∴?BEH≌?BEG.∴EH?EG?GD?x. 5在Rt△CEA中,∵AC = 6,BC?8,tan?CAE?tan?ABC?∴CE?AC?tan?CAE?∴BE?8?ACCE, ?BCAC6?63?39??.……………………………(1分) 82291697???.……………………………………………(1分) 222266721∴ED?2EG?x???.……………………………………(1分) 5525(3)四边形ABDC不可能为直角梯形.…………………………………(1分) ①当CD∥AB时,如果四边形ABDC是直角梯形, 只可能∠ABD =∠CDB = 90o. 在Rt△CBD中,∵BC?8, CEDAFB;. '. ∴CD?BC?cos?BCD?32, 524?BE. 5BD?BC?sin?BCD?32328?CD16CE5?1; ?5?∴,?32AB1025BE45∴ CDCE. ?ABBE∴CD不平行于AB,与CD∥AB矛盾. ∴四边形ABDC不可能为直角梯形.…………………………(2分) ②当AC∥BD时,如果四边形ABDC是直角梯形, 只可能∠ACD =∠CDB = 90o. ∵AC∥BD,∠ACB = 90, ∴∠ACB =∠CBD = 90. ∴∠ABD =∠ACB +∠BCD > 90o. 与∠ACD =∠CDB = 90o矛盾. ∴四边形ABDC不可能为直角梯形.…………………………(2分) o AFCo EBD普陀区 25.(本题满分14分) 已知P是⊙O的直径BA延长线上的一个动点,?P的另一边交⊙O于点C、D,两点位于AB的上方,AB=6,OP=m,sinP=,如图11所示.另一个半径为6的⊙O1经过点C、D,圆心距OO1=n. (1)当m=6时,求线段CD的长; (2)设圆心O1在直线AB上方,试用n的代数式表示m; (3)△POO1在点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由. 备用图 P C A O B A O B D 13;. 图11 '. 25.解: (1)过点O作OH⊥CD,垂足为点H,联结OC. 在Rt△POH中,∵sinP=,PO?6,∴OH?2.········································ (1分) ∵AB=6,∴OC=3. ···························································································· (1分) 由勾股定理得 CH?5. ······················································································· (1分) ∵OH⊥DC,∴CD?2CH?25. ································································· (1分) (2)在Rt△POH中,∵sinP=,PO =m,∴OH=21313m. ··································· (1分) 3?m?在Rt△OCH中,CH2=9???. ····································································· (1分) ?3?m??在Rt△O1CH中,CH=36??n??. ···························································· (1分) 3??223n2?81m???m?可得 36??n??=9???,解得m=. ········································ (2分) 3?2n??3?(3)△POO1成为等腰三角形可分以下几种情况: ● 当圆心O1、O在弦CD异侧时 223n2?81①OP=OO1,即m=n,由n=解得n=9. ········································ (1分) 2n即圆心距等于⊙O、⊙O1的半径的和,就有⊙O、⊙O1外切不合题意舍去.(1分) ②O1P=OO1,由(n?m2m2)?m2?()=n, 332293n2?81m=nnn=15. ·,即,········································ (1分) =解得解得 3352n81?3n2● 当圆心O1、O在弦CD同侧时,同理可得 m=. 2n981?3n2∵?POO1是钝角,∴只能是m?n,即n=,解得n=5. ··········· (2分) 52n995或15.综上所述,n的值为55 ;.