2018年重点高中高一分班考试数学试卷及答案 下载本文

数学试题参考答案及评分

一、选择题(本题有10小题,每小题4分,共40分。每小题只有一个选项是正确的,不选,多选,错选,均不给分) 题号 答案 1 C 2 A 3 D 4 C 5 D 6 A 7 B 8 B 9 C 10 B 二、填空题(本题有6小题,每小题5分,共30分) 题号 答案 11 1或3 12 13 13 2 14 1 15 16 21或13 395 28说明:第14题第一空2分,第2空3分

三、解答题(本题有8小题,第17题6分,第18~20题每题8分,第21~23题每题12分,第24题14分,满分80分) 17.(本题6分)

解:(1)A型号种子数为:1500×36%=540(粒),----------------------------------------- 1分

B型号种子数为:1500×24%=360(粒), ------------------------------ 2分 C型号种子数为:1500×(1-36%-24%)=600(粒),-------------------3分

答:A、B、C三种型号的种子分别有540粒,360粒,600粒 .

420×100%≈77.8%.----------------------------------- 4分 540320 B型号种子发芽率=×100%≈88.9%.---------------------------------- 5分

360480C型号种子发芽率=×100%=80%.

600 (2)A型号种子发芽率=

∴选B型号种子进行推广. ------------------------------------------- 6分

18.(本题8分) 解:(1)由

112a?b2???得,……① --------------------2分 aba?baba?b数学试题卷 第5页共10页

ab1ab1? ------------------------- 4分 ?,即222a?b(a?b)(a?b)2(2)由①得,(a?b)(a?b)?2ab, ∴a2?b2?2ab,--------------6分 又由题意得,b?0,

2 ∴两边同除以b2得,()?2?abaaa?1,∴()2?2??1?2, bbb∴(aa2?1)2?2,即(1?)?2 ------------------------- 8分 bb19.(本题8分)

解:(1)在甲商店购买所需费用:20?(220?20?2)?3600(元)

在乙商店购买所需费用:75%?220?20?3300?3600,应去乙商店购买----2

(2)设此人买x只书包

①若此人是在甲商店购买的

则x(220?2x)?6000,解得x1?50,x2?60---------------------------------------4分 当x?50时,每只书包单价为220?50?2?120?116

当x?60时,每只书包单价为220?60?2?110?116不合舍去----------------6分 ②若此人在乙商店购买磁,则有165x?6000,解得x?364不合舍去--------711分

故此人是在甲商店购买书包,买了50只-------------------------------------------------8分 20.(本题8分)

证明:延长AP至点F,使得PF = AP,连结BF,DF,CF--------------------------1分

A P是CD中点

∴四边形ACFD是平行四边形,--------------------------------------------2分

D

∴DF=AC=BF, P C DF∥AC,----------------------------------------------------------------4分 ∴∠FDA=CAB=60°-------------------------------------------------------5分 F B ∴△BDF是等边三角形-------------------------------------------------6分

(第20题)

数学试题卷 第6页共10页

可证△ABC≌△BAF ----------------------------------------------------7分 ∴AP=

11AF=BC------------------------------------------------------8分 2221.(本题12分)

1213?2b??a???a?1?22 解:(1)当0?a?b时,则 ? ,解得? ;------------------3分

113b?3??2a??b2???223913??a?2b???a?b??642(2)当a?0?时,则?,解得?(矛盾,舍去)----6

113213?2a??b2??b????22?4分

13??a??2?172b??a?b??2?0?b时,则?(3)当,解得?, 131132?2a??a2??b??4??22?a??2?17a?b??0?b,得 ?由---------------------------------------------------9分 132?b??41213?2a??a???22(4)当a?b?0时,?,所以a,b是一元二次方程

113?2b??b2???221213x?2x??0的两根,它的两根一正一负,与a?b?0矛盾,不可能。 2213综上所述:a?1,b?3或a??2?17,b? -------------------------------12分

422.(本题12分)

解:延长BA、FE交于点G,

AD是高,EF⊥BC ? AD∥EF

?△BAP∽△BGE,△BPD∽△BEF----------------------------------2分

数学试题卷 第7页共10页

?APEG?BPBE?PDEF ----------------------------------------------------3分 P为AD的中点,即AP=PD

? EG=EF---------------------------------------------------------------6分 ∠GAE=∠EFC=90,又∠GEA=∠FEC

?△GAE∽△CFE-------------------------------------------------------7分 ?EFECAE?EG ?EF2?AEEC?36

?EF=6--------------------------------------------------------------------9分

EF=12EC ,∠EFC=90

?∠C=30 ?BC=233AC=103 ----------------------------------------------12分 23.(本题12分)

(1)证法一:连结BM

AB是直径,AB⊥CD于E

? ∠AMB=90,CB?DB -----------------------------------2分 ?∠CMB=∠DMB

?∠AMD=∠FMC.----------------------------------------------------------------4分

证法二:连结AD

AB是直径,AB⊥CD于E

? CA?DA

?∠AMD=∠ADC--------------------------------------------2分

四边形ADCM内接于⊙O

?∠ADC+∠AMC=180

∠AMC+∠FMC=180

?∠FMC=∠ADC

?∠AMD=∠FMC.----------------------------------------------------------------4分

数学试题卷 第8页共10页

G A E P B D

F

(第22题)

)(图②