(完整)人教版七年级上期末动点问题专题(附答案解析) 下载本文

WORD格式可编辑

5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.

(1)若BC=300,求点A对应的数;

(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);

(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.

考点: 一元一次方程的应用;比较线段的长短. 分析:

(1)根据BC=300,AB=AC,得出AC=600,利用点C对应的数是200,即可得出点A对应的数;

(2)假设x秒Q在R右边时,恰好满足MR=4RN,得出等式方程求出即可; (3)假设经过的时间为y,得出PE=10y,QD=5y,进而得出

y原题得证.

,所以AC=600,C点对应200,

+5y﹣400=

y,得出

﹣AM=

解答:

解:(1)∵BC=300,AB=

∴A点对应的数为:200﹣600=﹣400;

(2)设x秒时,Q在R右边时,恰好满足MR=4RN,

∴MR=(10+2)×,RN=[600﹣(5+2)x],∴MR=4RN,(10+2)×=4×[600﹣(5+2)x], 解得:x=60;

∴60秒时恰好满足MR=4RN;

(3)设经过的时间为y,则PE=10y,QD=5y,

于是PQ点为[0﹣(﹣800)]+10y﹣5y=800+5y,一半则是所以AM点为:又QC=200+5y,所以

+5y﹣400=﹣AM=

y,

y=300为定值.

点评: 此题考查了一元一次方程的应用,根据已知得出各线段之间的关系等量关系是解题关键,此题阅读量较大

应细心分析.

专业知识分享

WORD格式可编辑

6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点. (1)如图1,若CF=2,则BE= 4 ,若CF=m,BE与CF的数量关系是 (2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由. (3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出若不存在,请说明理由.

值;

考点: 两点间的距离;一元一次方程的应用.

分析: (1)先根据EF=CE﹣CF求出EF,再根据中点的定义求出AE,然后根据BE=AB﹣AE代入数据进行计算即可

得解;根据BE、CF的长度写出数量关系即可;

(2)根据中点定义可得AE=2EF,再根据BE=AB﹣AE整理即可得解;

(3)设DE=x,然后表示出DF、EF、CF、BE,然后代入BE=2CF求解得到x的值,再求出DF、CF,计算即可得解.

解答: 解:(1)∵CE=6,CF=2,

∴EF=CE﹣CF=6﹣2=4, ∵F为AE的中点, ∴AE=2EF=2×4=8, ∴BE=AB﹣AE=12﹣8=4, 若CF=m, 则BE=2m, BE=2CF;

(2)(1)中BE=2CF仍然成立. 理由如下:∵F为AE的中点, ∴AE=2EF,∴BE=AB﹣AE, =12﹣2EF,

=12﹣2(CE﹣CF), =12﹣2(6﹣CF), =2CF;

(3)存在,DF=3.

理由如下:设DE=x,则DF=3x,∴EF=2x,CF=6﹣x,BE=x+7, 由(2)知:BE=2CF,∴x+7=2(6﹣x),解得,x=1,

∴DF=3,CF=5,∴=6.

点评: 本题考查了两点间的距离,中点的定义,准确识图,找出图中各线段之间的关系并准确判断出BE的表示是解题的关键.

专业知识分享

WORD格式可编辑

7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上) (1)若AB=10cm,当点C、D运动了2s,求AC+MD的值. (2)若点C、D运动时,总有MD=3AC,直接填空:AM=

AB.

的值.

(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求

考点: 比较线段的长短. 专题: 分类讨论.

分析: (1)计算出CM及BD的长,进而可得出答案;

(2)根据图形即可直接解答;

(3)分两种情况讨论,①当点N在线段AB上时,②当点N在线段AB的延长线上时,然后根据数量关系即可求解.

解答: 解:(1)当点C、D运动了2s时,CM=2cm,BD=6cm

∵AB=10cm,CM=2cm,BD=6cm

∴AC+MD=AB﹣CM﹣BD=10﹣2﹣6=2cm

(2)

(3)当点N在线段AB上时,如图

∵AN﹣BN=MN,又∵AN﹣AM=MN ∴BN=AM=AB,∴MN=AB,即

当点N在线段AB的延长线上时,如图

∵AN﹣BN=MN,又∵AN﹣BN=AB ∴MN=AB,即

.综上所述

=

点评: 本题考查求线段的长短的知识,有一定难度,关键是细心阅读题目,理清题意后再解答.

专业知识分享

WORD格式可编辑

8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x. (1)如果点P到点M,点N的距离相等,那么x的值是 ﹣1 ;

(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由. (3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?

考点: 一元一次方程的应用;数轴;两点间的距离.

分析: (1)根据三点M,O,N对应的数,得出NM的中点为:x=(﹣3+1)÷2进而求出即可;

(2)根据P点在N点右侧或在M点左侧分别求出即可;

(3)分别根据①当点M和点N在点P同侧时,②当点M和点N在点P两侧时求出即可.

解答: 解:(1)∵M,O,N对应的数分别为﹣3,0,1,点P到点M,点N的距离相等,

∴x的值是﹣1.

(2)存在符合题意的点P, 此时x=﹣3.5或1.5.

(3)设运动t分钟时,点P对应的数是﹣3t,点M对应的数是﹣3﹣t,点N对应的数是1﹣4t. ①当点M和点N在点P同侧时,因为PM=PN,所以点M和点N重合,

所以﹣3﹣t=1﹣4t,解得,符合题意.

②当点M和点N在点P两侧时,有两种情况.

情况1:如果点M在点N左侧,PM=﹣3t﹣(﹣3﹣t)=3﹣2t.PN=(1﹣4t)﹣(﹣3t)=1﹣t. 因为PM=PN,所以3﹣2t=1﹣t, 解得t=2.

此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,不符合题意,舍去.

情况2:如果点M在点N右侧,PM=(﹣3t)﹣(1﹣4t)=2t﹣3.PN=﹣3t﹣(1+4t)=t﹣1. 因为PM=PN,所以2t﹣3=t﹣1, 解得t=2.

此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,符合题意. 综上所述,三点同时出发,分钟或2分钟时点P到点M,点N的距离相等.

故答案为:﹣1.

点评: 此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.

专业知识分享