苏教版七年级下册数学期末考试知识点总结(A4打印版) 下载本文

苏教版七年级下册数学期末考试知识点总结

第十一章 一元一次不等式

一元一次不等式

重点:不等式的性质和一元一次不等式的解法。

难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。

知识点一:不等式的概念 1. 不等式:

用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式. 要点诠释: (1) 不等号的类型:

① “≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;

(2) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。 2.不等式的解:

能使不等式成立的未知数的值,叫做不等式的解。 要点诠释:

由不等式的解的定义可以知道,当对不等式中的未知数取一个数,

9

苏教版七年级下册数学期末考试知识点总结

若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,一般地,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。 3.不等式的解集:

一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式的解集的过程叫做解不等式。如:不等式x-4<1的解集是x<5. 不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。 要点诠释:

不等式的解集必须符合两个条件:

(1)解集中的每一个数值都能使不等式成立; (2)能够使不等式成立的所有的数值都在解集中。 知识点二:不等式的基本性质

基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

符号语言表示为:如果

,那么

基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。

10

苏教版七年级下册数学期末考试知识点总结

符号语言表示为:如果,并且,那么(或)。

基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。

符号语言表示为:如果 要点诠释:

(1)不等式的基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握;

(2)要理解不等式的基本性质1中的“同一个整式”的含义不仅包括相同的数,还有相同的单项式或多项式;

(3)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”;

(4)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。 知识点三:一元一次不等式的概念

只含有一个未知数,且含未知数的式子都是整式,未知数的次数是1,系数不为0.这样的不等式,叫做一元一次不等式。

,并且

,那么

(或

11

苏教版七年级下册数学期末考试知识点总结

要点诠释:

(1)一元一次不等式的概念可以从以下几方面理解:

①左右两边都是整式(单项式或多项式); ②含有一个未知数;③未知数的最高次数为1。

(2)一元一次不等式和一元一次方程可以对比理解。

相同点:二者都是只含有一个未知数,未知数的最高次数都是1,左右两边都是整式;不同点:一元一次不等式表示不等关系(用“>”、“<”、“≥”、“≤”连接),一元一次方程表示相等关系(用“=”连接)。 知识点四:一元一次不等式的解法 1.解不等式:

求不等式解的过程叫做解不等式。 2.一元一次不等式的解法:

与一元一次方程的解法类似,其根据是不等式的基本性质,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1. 要点诠释:

(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用

(2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤

12