以OC边为公共边的锐角有:∠COD,∠COE,∠COF共3个.以OD边为公共边的锐角有:∠DOE,∠DOF共2个.以OE边为一边的锐角有:∠EOF只1个.
锐角总数5+4+3+2+1=15(个).
②用图示法更为直观明了:如图3-10所示,锐角总数为:5+4+3+2+1=15(个).
想一想:①由例3可知:由一点发出的六条射线,组成的锐角的总数=5+4+3+2+1(个),由此猜想出如下规律:(见图3-11~15) 两条射线1个角(见图3-11)
三条射线2+1个角(见图3-12)
四条射线3+2+1个角(见图3-13)
五条射线4+3+2+1个角(见图3-14)
六条射线5+4+3+2+1个角(见图3-15)
总之,角的总数是从1开始的一串连续自然数之和,其中最大的自然数比射线数小1.
②同样,也可以这样想:如果把相邻两条射线构成的角叫做基本角,那么有共同顶点的基本角和角的总数之间的关系是:
角的总数是从1开始的一串连续自然数之和,其中最大的自然数等于基本角个数.
③注意,例2和例3的情况极其相似.虽然例2是关于线段的,例3是关于角的,但求总数时,它们有同样的数学表达式.同学们可以看出,一个数学式子可以表达表面上完全不同的事物中的数量关系,这就是数学的魔力.
习题三
1.书库里把书如图3-16所示的那样沿墙堆放起来.请你数一数这些书共有多少本?
2.图3-17所示是一个跳棋盘,请你数一数,这个跳棋盘上共有多少个棋孔?
3.数一数,图3-18中有多少条线段?
4.数一数,图3-19中有多少锐角?
5.数一数,图3-20中有多少个三角形?
6.数一数,图3-21中有多少正方形?
习题三解答
1.解:方法1:从左往右一摞一摞地数,再相加求和: 10+11+12+13+14+15+14+13+12+11+10 =135(本).
方法2:把这摞书形成的图形看成是由一个长方形和一个三角形“尖顶”组成.
长方形中的书 10×11=110
三角形中的书 1+2+3+4+5+4+3+2+1=25 总数:110+25=135(本).
2.解:因为棋孔较多,应找出排列规律,以便于计数.
仔细观察可知,图中大三角形ABC上的棋孔的排列规律是(从上往下数):1,2,3,4,5,6,7,8,9,10,11,12,13,另外还有三个小三角形中的棋孔的排列规律是1,2,3,4,所以棋孔总数是:(1+2+3+4+5+6+7+8+9+10+11+12+13)+(1+2+3+4)×3=91+10×3=121(个). 3.解:方法1:按图3-22所示方法数(图中只画出了一部分)
线段总数:7+6+5+4+3+2+1=28(条).