精品文档
时桶的容积是
桶的容积是
例3 有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。问:瓶内现有饮料多少立方分米?
分析与解:瓶子的形状不规则,并且不知道底面的半径,似乎无法计算。比较一下正放与倒放,因为瓶子的容积不变,装的饮料的体积不变,所以空余部分的体积应当相同。将正放与倒放的空余部分变换一下位置,可以看出饮料瓶的容积应当等于底面积不变,高为 20+5=25(厘米)
例4 皮球掉进一个盛有水的圆柱形水桶中。皮球的直径为15厘米,水桶
中后,水桶中的水面升高了多少厘米?
解:皮球的体积是
精品文档
精品文档
水面升高的高度是450π÷900π=0.5(厘米)。 答:水面升高了0.5厘米。
例5 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图)。如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?
分析与解:需要涂漆的面有圆柱体的下底面、外侧面、上面的圆环、圆孔的侧面、圆孔的底面,其中上面的圆环与圆孔的底面可以拼成一个与圆柱体的底面相同的圆。涂漆面积为
例6 将一个底面半径为20厘米、高27厘米的圆锥形铝块,和一个底面半径为30厘米、高20厘米的圆柱形铝块,熔铸成一底面半径为15厘米的圆柱形铝块,求这个圆柱形铝块的高。 解:被熔的圆锥形铝块的体积:
被熔的圆柱形铝块的体积:π×302×20=18000π(厘米3)。
熔成的圆柱形铝块的高:(3600π+18000π)÷(π×15) =21600π÷225π=96(厘米)。 答:熔铸成的圆柱体高96厘米。 练习12
1.右图是一顶帽子。帽顶部分是圆柱形,用黑布做;帽沿部分是一个圆环,用白布做。如果帽顶的半径、高与帽沿的宽都是a厘米,那么哪种颜色的布用得多?
2
2.一个底面直径为20厘米的圆柱形木桶里装有水,水中淹没着一个底面直径为18厘米、高为20厘米的铁质圆锥体。当圆锥体取出后,桶内水面将降低多少?
3.用直径为40厘米的圆钢锻造长300厘米、宽100厘米、厚2厘米的长方形钢板,应截取多长的一段圆钢? 精品文档
精品文档
容器高度的几分之几?
5.右上图是一个机器零件,其下部是棱长20厘米的正方体,上部是圆柱形的一半。求它的表面积与体积。
6.有两个盛满水的底面半径为10厘米、高为30厘米的圆锥形容器,将它们盛的水全部倒入一个底面半径为20厘米的圆柱形容器内,求水深。 答案与提示 练习12 1.一样多。
2.5.4厘米。
3.47.8厘米。
解:(300×100×2)÷(3.14×202)≈47.8(厘米)。
解:设水面高度是容器高度的x倍,则水面半径也是容器底面半径的x倍。根据题意得到
5.表面积2942厘米2,体积11140厘米3。
6.5厘米。
精品文档
精品文档
第13讲 立体图形(一)
我们学过的立体图形有长方体、正方体、圆柱体、圆锥体等。这一讲将通过长方体、正方体及其组合图形,讲解有关的计数问题。
例1 左下图中共有多少个面?多少条棱?
分析与解:如右上图所示,可以分前、后、左、右、上、下六个方向看这个立体图形。
前、后看各有1个面,左面看有1个面,右面看有2个面,上面看有2个面,下面看有1个面。所以共有
1+1+1+2+2+1= 8(个)面。
前后方向的棱有6条,左右方向的棱有6条,上下方向的棱也有6条,所以共有棱6+6+6=18(条)。 例2 右图是由18个边长为1厘米的小正方体拼成的,求它的表面积。
分析与解:如果一面一面去数,那么虽然可以得到答案,但太麻烦,而且容易出错。仔细观察会发现,这个立体的上面与下面、左面与右面、前面与后面的面积分别相等。
如上图所示,可求得表面积为 (9+7+8)×2=48(厘米)。
例3 右图是由22个小正方体组成的立体图形,其中共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?
2
分析与解:正方体只可能有两种: 由1个小正方体构成的正方体,有22个; 精品文档