£¨i£©L ( (2£¬-3£¬1)£¬£¨1£¬4£¬2£©£¬£¨5£¬-2£¬4£©) (ii) L(x-1£¬1-x£¬x-x) 2
R3
2F[x]£»
(iii) L(ex£¬e2x£¬e3x) C [a£¬b].
3£®°ÑÏòÁ¿×é{£¨2£¬1£¬-1£¬3£©£¬£¨-1£¬0£¬1£¬2£©}À©³äΪR4µÄÒ»¸ö»ù£®
4£®ÁîSÊÇÊýÓòFÉÏÒ»ÇÐÂú×ãÌõ¼þA¡¯=AµÄn½×¾ØÕóAËù³ÉµÄÏòÁ¿¿Õ¼ä£¬ÇóSµÄάÊý£® 5£®Ö¤Ã÷£¬¸´ÊýÓòC×÷ΪʵÊýÓòRÉÏÏòÁ¿¿Õ¼ä£¬Î¬ÊýÊÇ2£®Èç¹ûC¿´³ÉËü±¾ÉíÉϵÄÏòÁ¿¿Õ¼äµÄ»°£¬Î¬ÊýÊǼ¸£¿
6£®Ö¤Ã÷¶¨Àí6.4.2µÄÄæ¶¨Àí£ºÈç¹ûÏòÁ¿¿Õ¼äVµÄÿһ¸öÏòÁ¿¶¼¿ÉÒÔΨһµØ±í³ÉVÖÐÏòÁ¿
µÄÏßÐÔ×éºÏ£¬ÄÇôdimV = n.
7£®ÉèWÊÇR n µÄÒ»¸ö·ÇÁã×ӿռ䣬¶ø¶ÔÓÚWµÄÿһ¸öÏòÁ¿£¨a1£¬a2£¬?£¬an£©À´Ëµ£¬ÒªÃ´a1 = a2= ? = an = 0£¬ÒªÃ´Ã¿Ò»¸öai ¶¼²»µÈÓÚÁ㣬֤Ã÷dimW = 1£®
8£®ÉèWÊÇnάÏòÁ¿¿Õ¼äVµÄÒ»¸ö×ӿռ䣬ÇÒ0< dimW < n£®Ö¤Ã÷£ºWÔÚVÖÐÓв»Ö»Ò»¸öÓà×ӿռ䣮
9£®Ö¤Ã÷±¾Êé×îºóµÄÂÛ¶Ï£®
¡ì6.5 ×ø±ê
1£®Éè{¹ý¶É¾ØÕó£®
1
£¬
2
£¬?£¬
n
}ÊÇVµÄÒ»¸ö»ù£®ÇóÓÉÕâ¸ö»ùµ½{
2
£¬?£¬
n
£¬
1
}µÄ
2£®Ö¤Ã÷£¬{x3£¬x3+x£¬x2+1£¬x+1}ÊÇF3 [x]£¨ÊýÓòFÉÏÒ»ÇдÎÊý 3µÄ¶àÏîʽ¼°Á㣩µÄÒ»¸ö»ù£®ÇóÏÂÁжàÏîʽ¹ØÓÚÕâ¸ö»ùµÄ×ø±ê£º
£¨i£©x2+2x+3£» £¨ii£©x3£» £¨iii£©4£»£¨iv£©x2-x£®
33
3£®Éè
4
1
=(2£¬1£¬-1£¬1)£¬
1
2
=£¨0£¬3£¬1£¬0£©£¬
2
3
=£¨5£¬3£¬2£¬1£©£¬
=£¨6£¬6£¬1£¬3£©£®Ö¤Ã÷{ £¬ £¬
3£¬
4
} ×÷³ÉR4µÄÒ»¸ö»ù£®ÔÚR4ÖÐÇóÒ»
¸ö·ÇÁãÏòÁ¿£¬Ê¹Ëü¹ØÓÚÕâ¸ö»ùµÄ×ø±êÓë¹ØÓÚ±ê×¼»ùµÄ×ø±êÏàͬ£®
4£®Éè
=(1£¬2£¬-1)£¬
=£¨0£¬-1£¬3£©£¬ =£¨-2£¬3£¬1£©£¬ =£¨1£¬-1£¬0£©£»
123
1=£¨2£¬1£¬5£©£¬ £¬
£¬
23=£¨1£¬3£¬2£©£®
Ö¤Ã÷{
1 23
}ºÍ{ 1 £¬
2
£¬
3}¶¼ÊÇR3µÄ»ù£®ÇóǰÕßµ½ºóÕߵĹý¶É¾ØÕó£®
5£®Éè{ s¾ØÕó£®Áî ( 1
£¬
12
£¬?£¬
2
n
}ÊÇFÉÏnάÏòÁ¿¿Õ¼äVµÄÒ»¸ö»ù£®AÊÇFÉÏÒ»¸ön
s £¬ £¬?£¬ )=(
1
£¬
2
£¬?£¬
n
)A £®
Ö¤Ã÷ dimL( 1 £¬ 2
£¬?£¬ s)=ÖÈA£®
¡ì6.6 ÏòÁ¿¿Õ¼äµÄͬ¹¹
1£®Ö¤Ã÷,¸´ÊýÓòC×÷ΪʵÊýÓòRÉÏÏòÁ¿¿Õ¼ä,ÓëV2ͬ¹¹£® 2£®Éè
ÊÇÏòÁ¿¿Õ¼äVµ½WµÄÒ»¸öͬ¹¹Ó³Éä,V1ÊÇVµÄÒ»¸ö×Ó¿Õ¼ä.Ö¤Ã÷
ÊÇWµÄÒ»¸ö×ӿռ䣮
3£®Ö¤Ã÷:ÏòÁ¿¿Õ¼ä
¿ÉÒÔÓëËüµÄÒ»¸öÕæ×Ó¿Õ¼äͬ¹¹£®
¡ì6.7 ¾ØÕóµÄÖÈ Æë´ÎÏßÐÔ·½³Ì×éµÄ½â¿Õ¼ä
34
1£®Ö¤Ã÷£ºÐÐÁÐʽµÈÓÚÁãµÄ³ä·ÖÇÒ±ØÒªÌõ¼þÊÇËüµÄÐУ¨»òÁУ©ÏßÐÔÏà¹Ø£®
2£®Ö¤Ã÷£¬ÖÈ£¨A+B£© ÖÈA+ÖÈB£®
3£®ÉèAÊÇÒ»¸ömÐеľØÕó£¬ÖÈA=r£¬´ÓAÖÐÈÎÈ¡³ösÐУ¬×÷Ò»¸ösÐеľØÕóB£®Ö¤
Ã÷£¬ÖÈB r+s ¨C m£®
4£®ÉèAÊÇÒ»¸öm n¾ØÕó£¬ÖÈA=r£®´ÓAÖÐÈÎÒ⻮ȥm¨CsÐÐÓën¨CtÁУ¬ÆäÓàÔªËØ°´ÔÀ´Î»ÖÃÅųÉÒ»¸ös t¾ØÕóC£¬Ö¤Ã÷£¬ÖÈC r+s+t¨Cm¨Cn£®
5£®ÇóÆë´ÎÏßÐÔ·½³Ì×é
x1 + x2 + x3 + x4 + x5=0£¬ 3x1 +2x2 + x3 +x4 ¨C3x5 =0£¬
5x1 + 4 x2 + 3x3 +3x4¨Cx5 =0£¬ x2 + 2x3 + 2x4 + x5 =0
µÄÒ»¸ö»ù´¡½âϵ£®
6£®Ö¤Ã÷¶¨Àí6.7.3µÄÄæÃüÌ⣺FnµÄÈÎÒâÒ»¸ö×ӿռ䶼ÊÇijһº¬n¸öδ֪Á¿µÄÆë´ÎÏßÐÔ·½³Ì×éµÄ½â¿Õ¼ä£®
7£®Ö¤Ã÷£¬FµÄÈÎÒâÒ»¸ö¡ÙFµÄ×ӿռ䶼ÊÇÈô¸Én¨C1ά×Ó¿Õ¼äµÄ½»£®
µÚÆßÕ ÏßÐԱ任
nn¡ì7.1 ÏßÐÔÓ³Éä
1£®Áî
=£¨x1£¬x2£¬x3£©ÊÇR3µÄÈÎÒâÏòÁ¿£®ÏÂÁÐÓ³Éä ÄÄЩÊÇR3µ½×ÔÉíµÄÏßÐÔÓ³É䣿
35
£¨1£©
(?) = ?+ ? £¬?ÊÇR3µÄÒ»¸ö¹Ì¶¨ÏòÁ¿£® (?) = (2x1¨Cx2 + x3 £¬x2 + x3 £¬¨Cx3)
£¨2£©
£¨3£©
(?) =£¨x12 £¬x22 £¬x32£©£®
£¨4£© ?() =£¨cosx1£¬sinx2£¬0£©£®
2£®ÉèVÊÇÊýÓòFÉÏÒ»¸öһάÏòÁ¿¿Õ¼ä£®Ö¤Ã÷Vµ½×ÔÉíµÄÒ»¸öÓ³Éä ³äÒªÌõ¼þÊÇ£º¶ÔÓÚÈÎÒâ
ÊÇÏßÐÔÓ³ÉäµÄ
V£¬¶¼ÓÐ ( ) = a £¬ÕâÀïaÊÇFÖÐÒ»¸ö¶¨Êý£®
3£®ÁîMn (F) ±íʾÊýÓòFÉÏÒ»ÇÐn½×¾ØÕóËù³ÉµÄÏòÁ¿¿Õ¼ä£®È¡¶¨A Mn (F).¶ÔÈÎÒâ
X Mn (F)£¬¶¨Òå (X) = AX¨CXA£®
(i) Ö¤Ã÷£º
ÊÇMn (F)ÊÇ×ÔÉíµÄÏßÐÔÓ³Éä¡£
(XY) =
(X)Y+X
(Y) £®
(ii) Ö¤Ã÷£º¶ÔÓÚÈÎÒâX£¬Y Mn (F)£¬
4£®ÁîF4±íʾÊýÓòFÉÏËÄÔªÁпռ䣬ȡ
A=
¶ÔÓÚ
F4£¬Áî ( ) = A £®ÇóÏßÐÔÓ³Éä µÄºËºÍÏñµÄάÊý£®
ÊÇVµ½WµÄÒ»¸öÏßÐÔÓ³É䣮ÎÒ
n5£®ÉèVºÍW¶¼ÊÇÊýÓòFÉÏÏòÁ¿¿Õ¼ä£¬ÇÒdimV = n£®Áî ÃÇÈç´ËѡȡVµÄÒ»¸ö»ù£º Ker(
)µÄÒ»¸ö»ù£®Ö¤Ã÷£º
£¨i£©
(
)£¬?£¬
(
)×é³ÉIm(
1
£¬?£¬
s
£¬
s+1
£¬?£¬ £¬Ê¹µÃ
1
£¬?£¬
s
£¬ÊÇ
s+1n)µÄÒ»¸ö»ù£»
36