¸ßµÈ´úÊýϰÌâ ÏÂÔØ±¾ÎÄ

£¨i£©L ( (2£¬-3£¬1)£¬£¨1£¬4£¬2£©£¬£¨5£¬-2£¬4£©) (ii) L(x-1£¬1-x£¬x-x) 2

R3

2F[x]£»

(iii) L(ex£¬e2x£¬e3x) C [a£¬b].

3£®°ÑÏòÁ¿×é{£¨2£¬1£¬-1£¬3£©£¬£¨-1£¬0£¬1£¬2£©}À©³äΪR4µÄÒ»¸ö»ù£®

4£®ÁîSÊÇÊýÓòFÉÏÒ»ÇÐÂú×ãÌõ¼þA¡¯=AµÄn½×¾ØÕóAËù³ÉµÄÏòÁ¿¿Õ¼ä£¬ÇóSµÄάÊý£® 5£®Ö¤Ã÷£¬¸´ÊýÓòC×÷ΪʵÊýÓòRÉÏÏòÁ¿¿Õ¼ä£¬Î¬ÊýÊÇ2£®Èç¹ûC¿´³ÉËü±¾ÉíÉϵÄÏòÁ¿¿Õ¼äµÄ»°£¬Î¬ÊýÊǼ¸£¿

6£®Ö¤Ã÷¶¨Àí6.4.2µÄÄæ¶¨Àí£ºÈç¹ûÏòÁ¿¿Õ¼äVµÄÿһ¸öÏòÁ¿¶¼¿ÉÒÔΨһµØ±í³ÉVÖÐÏòÁ¿

µÄÏßÐÔ×éºÏ£¬ÄÇôdimV = n.

7£®ÉèWÊÇR n µÄÒ»¸ö·ÇÁã×ӿռ䣬¶ø¶ÔÓÚWµÄÿһ¸öÏòÁ¿£¨a1£¬a2£¬?£¬an£©À´Ëµ£¬ÒªÃ´a1 = a2= ? = an = 0£¬ÒªÃ´Ã¿Ò»¸öai ¶¼²»µÈÓÚÁ㣬֤Ã÷dimW = 1£®

8£®ÉèWÊÇnάÏòÁ¿¿Õ¼äVµÄÒ»¸ö×ӿռ䣬ÇÒ0< dimW < n£®Ö¤Ã÷£ºWÔÚVÖÐÓв»Ö»Ò»¸öÓà×ӿռ䣮

9£®Ö¤Ã÷±¾Êé×îºóµÄÂÛ¶Ï£®

¡ì6.5 ×ø±ê

1£®Éè{¹ý¶É¾ØÕó£®

1

£¬

2

£¬?£¬

n

}ÊÇVµÄÒ»¸ö»ù£®ÇóÓÉÕâ¸ö»ùµ½{

2

£¬?£¬

n

£¬

1

}µÄ

2£®Ö¤Ã÷£¬{x3£¬x3+x£¬x2+1£¬x+1}ÊÇF3 [x]£¨ÊýÓòFÉÏÒ»ÇдÎÊý 3µÄ¶àÏîʽ¼°Á㣩µÄÒ»¸ö»ù£®ÇóÏÂÁжàÏîʽ¹ØÓÚÕâ¸ö»ùµÄ×ø±ê£º

£¨i£©x2+2x+3£» £¨ii£©x3£» £¨iii£©4£»£¨iv£©x2-x£®

33

3£®Éè

4

1

=(2£¬1£¬-1£¬1)£¬

1

2

=£¨0£¬3£¬1£¬0£©£¬

2

3

=£¨5£¬3£¬2£¬1£©£¬

=£¨6£¬6£¬1£¬3£©£®Ö¤Ã÷{ £¬ £¬

3£¬

4

} ×÷³ÉR4µÄÒ»¸ö»ù£®ÔÚR4ÖÐÇóÒ»

¸ö·ÇÁãÏòÁ¿£¬Ê¹Ëü¹ØÓÚÕâ¸ö»ùµÄ×ø±êÓë¹ØÓÚ±ê×¼»ùµÄ×ø±êÏàͬ£®

4£®Éè

=(1£¬2£¬-1)£¬

=£¨0£¬-1£¬3£©£¬ =£¨-2£¬3£¬1£©£¬ =£¨1£¬-1£¬0£©£»

123

1=£¨2£¬1£¬5£©£¬ £¬

£¬

23=£¨1£¬3£¬2£©£®

Ö¤Ã÷{

1 23

}ºÍ{ 1 £¬

2

£¬

3}¶¼ÊÇR3µÄ»ù£®ÇóǰÕßµ½ºóÕߵĹý¶É¾ØÕó£®

5£®Éè{ s¾ØÕó£®Áî ( 1

£¬

12

£¬?£¬

2

n

}ÊÇFÉÏnάÏòÁ¿¿Õ¼äVµÄÒ»¸ö»ù£®AÊÇFÉÏÒ»¸ön

s £¬ £¬?£¬ )=(

1

£¬

2

£¬?£¬

n

)A £®

Ö¤Ã÷ dimL( 1 £¬ 2

£¬?£¬ s)=ÖÈA£®

¡ì6.6 ÏòÁ¿¿Õ¼äµÄͬ¹¹

1£®Ö¤Ã÷,¸´ÊýÓòC×÷ΪʵÊýÓòRÉÏÏòÁ¿¿Õ¼ä,ÓëV2ͬ¹¹£® 2£®Éè

ÊÇÏòÁ¿¿Õ¼äVµ½WµÄÒ»¸öͬ¹¹Ó³Éä,V1ÊÇVµÄÒ»¸ö×Ó¿Õ¼ä.Ö¤Ã÷

ÊÇWµÄÒ»¸ö×ӿռ䣮

3£®Ö¤Ã÷:ÏòÁ¿¿Õ¼ä

¿ÉÒÔÓëËüµÄÒ»¸öÕæ×Ó¿Õ¼äͬ¹¹£®

¡ì6.7 ¾ØÕóµÄÖÈ Æë´ÎÏßÐÔ·½³Ì×éµÄ½â¿Õ¼ä

34

1£®Ö¤Ã÷£ºÐÐÁÐʽµÈÓÚÁãµÄ³ä·ÖÇÒ±ØÒªÌõ¼þÊÇËüµÄÐУ¨»òÁУ©ÏßÐÔÏà¹Ø£®

2£®Ö¤Ã÷£¬ÖÈ£¨A+B£© ÖÈA+ÖÈB£®

3£®ÉèAÊÇÒ»¸ömÐеľØÕó£¬ÖÈA=r£¬´ÓAÖÐÈÎÈ¡³ösÐУ¬×÷Ò»¸ösÐеľØÕóB£®Ö¤

Ã÷£¬ÖÈB r+s ¨C m£®

4£®ÉèAÊÇÒ»¸öm n¾ØÕó£¬ÖÈA=r£®´ÓAÖÐÈÎÒ⻮ȥm¨CsÐÐÓën¨CtÁУ¬ÆäÓàÔªËØ°´Ô­À´Î»ÖÃÅųÉÒ»¸ös t¾ØÕóC£¬Ö¤Ã÷£¬ÖÈC r+s+t¨Cm¨Cn£®

5£®ÇóÆë´ÎÏßÐÔ·½³Ì×é

x1 + x2 + x3 + x4 + x5=0£¬ 3x1 +2x2 + x3 +x4 ¨C3x5 =0£¬

5x1 + 4 x2 + 3x3 +3x4¨Cx5 =0£¬ x2 + 2x3 + 2x4 + x5 =0

µÄÒ»¸ö»ù´¡½âϵ£®

6£®Ö¤Ã÷¶¨Àí6.7.3µÄÄæÃüÌ⣺FnµÄÈÎÒâÒ»¸ö×ӿռ䶼ÊÇijһº¬n¸öδ֪Á¿µÄÆë´ÎÏßÐÔ·½³Ì×éµÄ½â¿Õ¼ä£®

7£®Ö¤Ã÷£¬FµÄÈÎÒâÒ»¸ö¡ÙFµÄ×ӿռ䶼ÊÇÈô¸Én¨C1ά×Ó¿Õ¼äµÄ½»£®

µÚÆßÕ ÏßÐԱ任

nn¡ì7.1 ÏßÐÔÓ³Éä

1£®Áî

=£¨x1£¬x2£¬x3£©ÊÇR3µÄÈÎÒâÏòÁ¿£®ÏÂÁÐÓ³Éä ÄÄЩÊÇR3µ½×ÔÉíµÄÏßÐÔÓ³É䣿

35

£¨1£©

(?) = ?+ ? £¬?ÊÇR3µÄÒ»¸ö¹Ì¶¨ÏòÁ¿£® (?) = (2x1¨Cx2 + x3 £¬x2 + x3 £¬¨Cx3)

£¨2£©

£¨3£©

(?) =£¨x12 £¬x22 £¬x32£©£®

£¨4£© ?() =£¨cosx1£¬sinx2£¬0£©£®

2£®ÉèVÊÇÊýÓòFÉÏÒ»¸öһάÏòÁ¿¿Õ¼ä£®Ö¤Ã÷Vµ½×ÔÉíµÄÒ»¸öÓ³Éä ³äÒªÌõ¼þÊÇ£º¶ÔÓÚÈÎÒâ

ÊÇÏßÐÔÓ³ÉäµÄ

V£¬¶¼ÓÐ ( ) = a £¬ÕâÀïaÊÇFÖÐÒ»¸ö¶¨Êý£®

3£®ÁîMn (F) ±íʾÊýÓòFÉÏÒ»ÇÐn½×¾ØÕóËù³ÉµÄÏòÁ¿¿Õ¼ä£®È¡¶¨A Mn (F).¶ÔÈÎÒâ

X Mn (F)£¬¶¨Òå (X) = AX¨CXA£®

(i) Ö¤Ã÷£º

ÊÇMn (F)ÊÇ×ÔÉíµÄÏßÐÔÓ³Éä¡£

(XY) =

(X)Y+X

(Y) £®

(ii) Ö¤Ã÷£º¶ÔÓÚÈÎÒâX£¬Y Mn (F)£¬

4£®ÁîF4±íʾÊýÓòFÉÏËÄÔªÁпռ䣬ȡ

A=

¶ÔÓÚ

F4£¬Áî ( ) = A £®ÇóÏßÐÔÓ³Éä µÄºËºÍÏñµÄάÊý£®

ÊÇVµ½WµÄÒ»¸öÏßÐÔÓ³É䣮ÎÒ

n5£®ÉèVºÍW¶¼ÊÇÊýÓòFÉÏÏòÁ¿¿Õ¼ä£¬ÇÒdimV = n£®Áî ÃÇÈç´ËѡȡVµÄÒ»¸ö»ù£º Ker(

)µÄÒ»¸ö»ù£®Ö¤Ã÷£º

£¨i£©

(

)£¬?£¬

(

)×é³ÉIm(

1

£¬?£¬

s

£¬

s+1

£¬?£¬ £¬Ê¹µÃ

1

£¬?£¬

s

£¬ÊÇ

s+1n)µÄÒ»¸ö»ù£»

36