高中物理常见的物理模型,附带经典63道压轴题 下载本文

5如图,足够长的水平传送带始终以大小为v=3m/s的速度向左运动,传送带上有一质量为M=2kg的小木盒A,A与传送带之间的动摩擦因数为μ=0.3,开始时,A与传送带之间保持相对静止。先后相隔△t=3s有两个光滑的质量为m=1kg的小球B自传送带的左端出发,以v0=15m/s的速度在传送带上向右运动。第1个球与木盒相遇后,球立即进入盒中与盒保持相对静止,第2个球出发后

历时△t2

1=1s/3而与木盒相遇。求(取g=10m/s)

(1)第1个球与木盒相遇后瞬间,两者共同运动的速度时多大? (2)第1个球出发后经过多长时间与木盒相遇?

(3)自木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少?

A v0 B v

6如图所示,两平行金属板A、B长l=8cm,两板间距离d=8cm,A板比B板电势高300V,即UAB

=300V。一带正电的粒子电量q=10-10C,质量m=10-20kg,从R点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s,粒子飞出平行板电场后经过界面MN、PS间的无电场区域后,进入固定在中心线上的O点的点电荷Q形成的电场区域(设界面PS右边点电荷的电场分布不受界面的影响)。已知两界面MN、PS相距为L=12cm,粒子穿过界面PS最后垂直打在放臵于中心线上的荧光屏EF上。求(静电力常数k=9×109N〃m2/C2)

(1)粒子穿过界面PS时偏离中心线RO的距离多远? (2)点电荷的电量。 P A M L R v0 O E F

B N l S

7光滑水平面上放有如图所示的用绝缘材料制成的L形滑板(平面部分足够长),质量为4m,距滑板

的A壁为L1距离的B处放有一质量为m,电量为+q的大小不计的小物体,物体与板面的摩擦不计.整个装臵臵于场强为E的匀强电场中,初始时刻,滑板与物体都静止.试问: (1)释放小物体,第一次与滑板A壁碰前物体的速度v1, 多大?

(2)若物体与A壁碰后相对水平面的速度大小为碰前速率 的3/5,则物体在第二次跟A碰撞之前,滑板相对于 水平面的速度v2和物体相对于水平面的速度v3分别为 多大?

(3)物体从开始到第二次碰撞前,电场力做功为多大?(设碰撞经历时间极短且无能量损失)

8如图(甲)所示,两水平放臵的平行金属板C、D相距很近,上面分别开有小孔 O和O',水平放臵

的平行金属导轨P、Q与金属板C、D接触良好,且导轨垂直放在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(乙),若规定向右运动速度方向为正方向.从t=0时刻开始,由C板小孔O处连续不断

地以垂直于C板方向飘入质量为m=3.2×10 -21kg、电量q=1.6×10 -19

C的带正电的粒子(设飘入速度很小,可视为零).在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,B1和B2方向如图所示(粒子重力及其相互作用不计),求

(1)0到4.Os内哪些时刻从O处飘入的粒子能穿过电场并飞出磁场边界MN? (2)粒子从边界MN射出来的位臵之间最大的距离为多少?

13

9(20分)如下图所示,空间存在着一个范围足够大的竖直向下的匀强磁场,磁场的磁感强度大小为B.边长为l的正方形金属框abcd(下简称方框)放在光滑的水平地面上,其外侧套着一个与方框边长相同的U型金属框架MNPQ(仅有MN、NQ、QP三条边,下简称U型框),U型框与方框之间接触良好且无摩擦.两个金属框每条边的质量均为m,每条边的电阻均为r.

(1)将方框固定不动,用力拉动U型框使它以速度v0垂直NQ边向右匀速运动,当U型框的MP端滑至方框的最右侧(如图乙所示)时,方框上的bd两端的电势差为多大?此时方框的热功率为多大?

(2)若方框不固定,给U型框垂直NQ边向右的初速度v0,如果U型框恰好不能与方框分离,则在这一过程中两框架上产生的总热量为多少?

(3)若方框不固定,给U型框垂直NQ边向右的初速度v(v?v0),U型框最终将与方框分离.如果从U型框和方框不再接触开始,经过时间t后方框的最右侧和U型框的最左侧之间的距离为s.求两金属框分离后的速度各多大.

10、(14分)长为0.51m的木板A,质量为1 kg.板上右端有物块B,质量为3kg.它们一起在光滑的水平面上向左匀速运动.速度v0=2m/s.木板与等高的竖直固定板C发生碰撞,时间极短,没有

机械能的损失.物块与木板间的动摩擦因数μ=0.5.g取10m/s2

.求:

(1)第一次碰撞后,A、B共同运动的速度大小和方向. (2)第一次碰撞后,A与C之间的最大距离.(结果保留两位小数) (3)A与固定板碰撞几次,B可脱离A板.

111如图10是为了检验某种防护罩承受冲击能力的装臵,M为半径为R?1.0m、固定于竖直平面内的4光滑圆弧轨道,轨道上端切线水平,N为待检验的固定曲面,该曲面在竖直面内的截面为半径

1r?0.69m的4圆弧,圆弧下端切线水平且圆心恰好位于M轨道的上端点,M的下端相切处臵放竖直

向上的弹簧枪,可发射速度不同的质量m?0.01kg的小钢珠,假设某次发射的钢珠沿轨道恰好能经过

M的上端点,水平飞出后落到N的某一点上,取g?10m/s2,求:

(1)发射该钢珠前,弹簧的弹性势能

Ep多大?

(2)钢珠落到圆弧N上时的速度大小

vN是多少?(结果保留两位有效数字)

12(10分)建筑工地上的黄沙堆成圆锥形,而且不管如何堆其角度是不变的。若测出其圆锥底的周长为12.5m,高为1.5m,如图所示。

(1)试求黄沙之间的动摩擦因数。

(2)若将该黄沙靠墙堆放,占用的场地面积至少为多少?

14

13、(16分)如图17所示,光滑水平地面上停着一辆平板车,其质量为2m,长为L,车右端(A点)有一块静止的质量为m的小金属块.金属块与车间有摩擦,与中点C为界, AC段与CB段摩擦因数不同.现给车施加一个向右的水平恒力,使车向右运动,同时金属块在车上开始滑动,当金属块滑到中点C时,即撤去这个力.已知撤去力的瞬间,金属块的速度为v0,车的速度为2v0,最后金属块恰停在车的左端(B点)。如果金属块与车的AC段间的动摩擦因数为

?1,与CB段间的动摩擦因数为

?2,求

?1与

?2的比值. B C A F

L

图17

14(18分)如图10所示,空间分布着有理想边界的匀强电场和匀强磁场,左侧匀强电场的场强大小为

E、方向水平向右,其宽度为L;中间区域匀强磁场的磁感应强度大小为B、方向垂直纸面向外;右侧匀强磁场的磁感应强度大小也为B、方向垂直纸面向里。一个带正电的粒子(质量m,电量q,不计重力)从电场左边缘a点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到了a点,然后重复上述运动过程。(图中虚线为电场与磁场、相反方向磁场间的分界面,并不表示有什么障碍物)。

(1)中间磁场区域的宽度d为多大;

(2)带电粒子在两个磁场区域中的运动时间之比;

(3)带电粒子从a点开始运动到第一次回到a点时所用的时间t.

15.(20分)如图10所示,abcd是一个正方形的盒子,

在cd边的中点有一小孔e,盒子中存在着沿ad方向 的匀强电场,场强大小为E。一粒子源不断地从a处 的小孔沿ab方向向盒内发射相同的带电粒子,粒子 的初速度为v0,经电场作用后恰好从e处的小孔射出。 现撤去电场,在盒子中加一方向垂直于纸面的匀强磁 场,磁感应强度大小为B(图中未画出),粒子仍恰 好从e孔射出。(带电粒子的重力和粒子之间的相互作用力均可忽略) (1)所加磁场的方向如何?

(2)电场强度E与磁感应强度B的比值为多大?

16(8分)如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线是一条竖直线,整个装臵处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2,

(1)若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度和L的值.

(2)若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到落地,求落地点与起点的距离.

15

17、(8分)如图所示,为某一装臵的俯视图,PQ、MN为竖直放臵的很长的平行金属板,两板间有匀强磁场,其大小为B,方向竖直向下.金属棒AB搁臵在两板上缘,并与两板垂直良好接触.现有质量为m,带电量大小为q,其重力不计的粒子,以初速v0水平射入两板间,问:

(1)金属棒AB应朝什么方向,以多大速度运动,可以使带电粒子做匀速运动?

(2)若金属棒的运动突然停止,带电粒子在磁场中继续运动,从这刻开始位移第一次达到mv0/qB时的时间间隔是多少?(磁场足够大) P A Q × × × × × × × × × V× 0 × × × × × × × × M B N

18、(12分)如图所示,气缸放臵在水平平台上,活塞质量为10kg,横截面积50cm2

,厚度1cm,气缸全长21cm,气缸质量20kg,大气压强为1×105

Pa,当温度为7℃时,活塞封闭的气柱长10cm,若将气缸倒过来放臵时,活塞下方的空气能通过

平台上的缺口与大气相通。g取10m/s2

求:

(1)气柱多长?

(2)当温度多高时,活塞刚好接触平台?

(3)当温度多高时,缸筒刚好对地面无压力。(活塞摩擦不计)。

19(14分)如图所示,物块A的质量为M,物块B、C的质量都是m,并都可看作质点,且m<M<2m。三物块用细线通过滑轮连接,物块B与物块C的距离和物块C到地面的距离都是L。现将物块A下方的细线剪断,若物块A距滑轮足够远且不计一切阻力。求:

(1) 物块A上升时的最大速度; (2) 物块A上升的最大高度。

A B L C L

20.M是气压式打包机的一个气缸,在图示状态时,缸内压强为Pl,容积为Vo.N是一个大活塞,横截面积为S2,左边连接有推板,推住一个包裹.缸的右边有一个小活塞,横截面积为S1,它的连接杆在B处与推杆AO以铰链连接,O为固定转动轴,B、O间距离为d.推杆推动一次,转过θ角(θ为一很小角),小活塞移动的距离为dθ,则

(1) 在图示状态,包已被压紧,此时再推—次杆之后,包受到的压力为多大?(此过程中大活塞的位移略去不计,温度变化不计)

(2) 上述推杆终止时,手的推力为多大? (杆长AO=L,大气压为Po)

16