医学生物学重点、难点指导 下载本文

“医学生物学”重点、难点指导

一、绪论

(一)重点:掌握医学生物学的概念,准确理解医学生物学与医学的相互关系。

医学生物学和生物学的区别及联系的学习有助于掌握医学生物学概念,理解其内涵。而学习医学生物学的目的性、重要性则体现在其与基础医学和临床医学的联系性上。 (二)难点:医学生物学与临床医学的关系。

医学生物学与临床医学的关系较为复杂,在课堂教学中,可通过老师对若干个重大而常见的临床医学问题的介绍来理解其与本学科基础理论的密切联系,值得注意到是,对于大一新生,在例如肿瘤、贵重药品生产、遗传病诊断和治疗等临床案例学习时应注意深度适当。

二、细胞的基本概念、细胞膜

(一)重点:掌握细胞膜的分子结构、细胞膜的特性和细胞膜的物质交换功能。

对于膜分子结构的学习,应重点掌握“液态镶嵌模型”和“脂筏模型”的内容。细胞膜功能复杂多样,可着重理解其重要的物质交换功能,对于穿膜运输和膜泡运输的各种具体运输方式,学生要准确掌握概念,正确理解转运机制,熟悉所装运物质种类。 (二)难点:主动运输机制、膜受体与信号传递。

1. 主动运输是细胞膜重要的运送物资方式之一,其中的Na+-K+泵、协同运输是较复杂的学习内容。

Na+-K+泵 ——实际上就是Na+-K+ATP酶,存在于动、植物细胞质膜上,它有大小两个亚基,大亚基催化ATP水解,小亚基是一个糖蛋白。Na+-K+ATP酶通过磷酸化和去磷酸化过程发生构象的变化,导致与Na+、K+的亲和力发生变化。大亚基以亲Na+态结合Na+后,触发水解ATP。每水解一个ATP释放的能量输送3个Na+到胞外,同时摄取2个K+入胞,造成跨膜梯度和电位差,这对神经冲动传导尤其重要,Na+-K+泵造成的膜电位差约占整个神经膜电压的80%。若将纯化的Na+-K+泵装配在红细胞膜囊泡(血影)上,人为地增大膜两边的Na+、K+梯度到一定程度,当梯度所持有的能量大于ATP水解的化学能时,Na+、K+会反向顺浓差流过Na+-K+泵,同时合成ATP。

协同运输——是一类靠间接提供能量完成的主动运输方式。物质跨膜运动所需要的能量

1

来自膜两侧离子的电化学浓度梯度,而维持这种电化学势的是钠钾泵或质子泵。动物细胞中常常利用膜两侧Na+浓度梯度来驱动。

二者的重要区别就是:离子泵--ATP直接供能,协同运输--ATP间接供能。 2. 膜受体与信号传递是诸多基础医学课程的基础,故学生在掌握受体结构基础上去理解信号传递功能。

三、内质网 高尔基复合体

(一)重点:内质网的类型及主要功能;高尔基复合体的形态结构和主要功能。

1.内质网可分成糙面内质网和光面内质网两类,对比它们的形态、分布、表面是否附着核糖体来掌握各自特点。

2.掌握高尔基复合体形态功能特点的关键在于理解其极性特征,同学们还应该注意的是大学里高尔基复合体的结构描述与中学生物学有所不同。高尔基复合体有多个重要功能,其中分泌功能大家要重点掌握,蛋白质分泌过程是与多种细胞结构的功能相关的,蛋白质从RER上核糖体里合成,沿RER、小囊泡、顺面高尔基网、中间高尔基网、反面高尔基网、分泌泡到细胞外完成分泌过程。

(二)难点:蛋白质糖基化;信号肽假说。

1.糖基化:蛋白质糖基化是指单糖或寡糖与蛋白质共价结合形成糖蛋白的过程。在RER腔中进行的是N-连接的糖基化修饰。

2.信号肽假说:编码分泌蛋白的mRNA在翻译时首先合成的是N 末端带有疏水氨基酸残基的信号肽,它被内质网膜上的受体识别并与之相结合。信号肽经由膜中蛋白质形成的孔道到达内质网内腔,随即被位于腔表面的信号肽酶水解,由于它的引导,新生的多肽就能够通过内质网膜进入腔内,最终被分泌到胞外。翻译结束后,核糖体亚基解聚、孔道消失,内质网膜又恢复原先的脂双层结构。

四、溶酶体 线粒体

(一)重点:溶酶体的超微结构、种类及功能;线粒体的亚微结构及功能定位。

1. 溶酶体(lysosomes)真核细胞中的一种细胞器,为单层膜包被的囊状结构,直径约0.025~0.8微米;内含多种水解酶,专司分解各种外源和内源的大分子物质。溶酶体的酶有3个特点:(1)溶酶体膜蛋白多为糖蛋白,溶酶体膜内表面带负电荷。所以有助于溶酶体中的酶保持游离状态。这对行使正常功能和防止细胞自身被消化有着重要意义;(2)所有水解酶在pH值=5时左右活性最佳,但其周围胞质中pH值为7.2。溶酶体膜内含有一种特殊的转

2

运蛋白,可以利用ATP水解的能量将胞质中的H+(氢离子)泵入溶酶体,以维持其pH5;(3)只有当被水解的物质进入溶酶体内时,溶酶体内的酶类才行使其分解作用。一旦溶酶体膜破损,水解酶逸出,导致细胞自溶。根据完成其生理功能的不同阶段可分为初级溶酶体(primary lysosome),次级溶酶体(secondary lysosome)和残体(residual body)。

2. 线粒体由内外两层膜封闭,包括外膜、内膜、膜间隙和基质四个功能区隔。 (1)外膜 (out membrane)含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5kDa以下的分子通过,1kDa以下的分子可自由通过。标志酶为单胺氧化酶。

(2)内膜 (inner membrane)含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。通透性很低,仅允许不带电荷的小分子物质通过,大分子和离子通过内膜时需要特殊的转运系统。如:丙酮酸和焦磷酸是利用H+ 梯度协同运输。线粒体氧化磷酸化的电子传递链位于内膜,因此从能量转换角度来说,内膜起主要的作用。内膜的标志酶为细胞色素c氧化酶。

(3)膜间隙(intermembrane space)是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm。由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似。标志酶为腺苷酸激酶。

(4)基质(matrix)为内膜和嵴包围的空间。除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。基质具有一套完整的转录和翻译体系。包括线粒体DNA(mtDNA),70S型核糖体,tRNA 、rRNA、DNA聚合酶、氨基酸活化酶等。基质中还含有纤维丝和电子密度很大的致密颗粒状物质,内含Ca2+ 、Mg2+ 、Zn2+ 等离子

(二)难点:溶酶体与疾病的关系;电子传递链偶联氧化磷酸化。 1. 溶酶体与疾病的关系。

(1)矽肺:二氧化硅尘粒(矽尘)吸入肺泡后被巨噬细内吞噬,含有矽尘的吞噬小体与溶酶体合并成为次级溶酶体。二氧化硅的羟基与溶酶体膜的磷脂或蛋白形成氢键,导致吞噬细胞溶酶体崩解,细胞本身也被破坏,矽尘释出,后又被其他巨噬细内吞噬,如此反复进行。受损或已破坏的巨噬细胞释放“致纤维化因子”,并激活成纤维细胞,导致胶原纤维沉积,肺组织纤维化。

(2)溶酶体贮积症:溶酶体贮积症(Lysosome Storage Diseases 简称:LSDs)是由于遗传缺陷引起的,由于溶酶体的酶发生变异,功能丧失,导致底物在溶酶体中大量贮积,进而影

3

响细胞功能。II型糖原累积病(Pompe病或称庞贝氏病):溶酶体缺乏α-1,4-葡萄糖苷酶,糖原在溶酶体中积累,导致心、肝、舌肿大和骨骼肌无力。属常染色体缺陷性遗传病,患者多为小孩,常在两周岁以前死亡。

(3)肿瘤:溶酶体与肿瘤的关系日益引起人们的关注,一般有以下几种观点: 1)致癌物质引起细胞分裂调节机能的障阻及染色体畸变,可能与溶酶体释放水解酶的作用有关;

2)某些影响溶酶体膜通透性的物质,如巴豆油,某些去垢剂、高压氧等,是促进致癌作用的辅助因子,也能引发细胞的异常分裂;

3)在核膜残缺的情况下,核膜对核的保护丧失,溶酶体可以溶解染色质,而引起细胞突变;

4)溶酶体代谢过程中的某些产物是肿瘤细胞增殖的物质基础;

5)致癌物质进入细胞,在与染色体整合之前,总是先贮存在溶酶体中,这已为放射自显影所证实。

总之,溶酶体与肿瘤发生是否有直接关系,尚待进一步探索。 2. 电子传递链偶联氧化磷酸化。

1961年,英国学者Peter Mitchell提出化学渗透假说(1978年获诺贝尔化学奖),说明了电子传递释出的能量用于形成一种跨线粒体内膜的质子梯度(H+梯度),这种梯度驱动ATP的合成。这一过程概括如下:

(1)NADH的氧化,其电子沿呼吸链的传递,造成H+ 被3个H+ 泵,即NADH脱氢酶、细胞色素bc1复合体和细胞色素氧化酶从线粒体基质跨过内膜泵入膜间隙。

(2).H+ 泵出,在膜间隙产生一高的H+ 浓度,这不仅使膜外侧的pH较内侧低(形成pH梯度),而且使原有的外正内负的跨膜电位增高,由此形成的电化学质子梯度成为质子动力,是H+ 的化学梯度和膜电势的总和。

(3)H+ 通过ATP合酶流回到线粒体基质,质子动力驱动ATP合酶合成ATP。

五、核糖体、细胞骨架

(一)重点:掌握核糖体化学组成、形态结构、类型及功能;细胞骨架概念;中心体概念。

核糖体是一种非膜相结构的细胞器,是细胞内蛋白质合成的场所,普遍存在于原核细胞

4