±±Ê¦´ó°æ°ËÄ꼶ϲáÊýѧµÚËÄÕÂÒòʽ·Ö½â¾«Á·Ï°Ìâ ÏÂÔØ±¾ÎÄ

20.·Ö½âÒòʽ£º(1)

(3) ¨C2x2n-4xn

122

axy+2axy+2a (2)(x2-6x)2+18(x2-6x)+81 221£®½«ÏÂÁи÷ʽ·Ö½âÒòʽ£º

£¨1£©4m2?9n2£» £¨2£©9(m?n)2?16(m?n)2£» £¨3£©m4?16n4£»

22£®·Ö½âÒòʽ£¨1£©(x?y)2?10(x?y)?25£» £¨2£©16a4?72a2b2?81b4£»

23.Óüò±ã·½·¨¼ÆË㣺

(1)¡Á+¡Á (2)39¡Á37-13¡Á34

£¨3£©£®?

171717?19.8??2.5? 31313124£®ÊÔ˵Ã÷£ºÁ½¸öÁ¬ÐøÆæÊýµÄƽ·½²îÊÇÕâÁ½¸öÁ¬ÐøÆæÊýºÍµÄ2±¶¡£

25£®Èçͼ£¬ÔÚÒ»¿é±ß³¤ÎªaÀåÃ×µÄÕý·½ÐÎÖ½°åËĽǣ¬¸÷¼ôÈ¥Ò»¸ö±ß³¤Îª b(b<ÀåÃ×µÄÕý·½ÐΣ¬ÀûÓÃÒòʽ·Ö½â¼ÆËãµ±a=£¬b=ʱ£¬Ê£Óಿ·ÖµÄÃæ»ý¡£

a)2b

26£®½«ÏÂÁи÷ʽ·Ö½âÒòʽ

11£¨1£©a3m?n?am?nb2n(m?n,ÇÒ¾ùΪ×ÔÈ»Êý)

273

a £¨2£©x3n?1yn?1?2x2n?1y2n?1?xn?1y3n?1£» £¨12£©£®x6n+2+2x3n+2+x2

(3)4a2b2?(a2?b2)2

(5)(1?a2)(1?b2)?(a2?1)2(b2?1)2

(6)(ax?by)2?(ay?bx)2?2(ax?by)(ay?bx)

(7)(x2?y2)2?(z2?x2)2?(y2?z2)2 (8)625b4?(a?b)4

(9)(x2?b2?y2?a2)2?4(ab?xy)2 £¨10£©(x2+y2)2-4x2y2

(4)(c2?a2?b2)2?4a2b2

£¨13£©£®9(a+1)2(a-1)2-6(a2-1)(b2-1)+(b+1)2(b-1)2

27.ÒÑÖª(4x-2y-1)2+xy?2=0£¬Çó4x2y-4x2y2+xy2µÄÖµ.

28£®ÒÑÖª£ºa=10000£¬b=9999£¬Çóa2+b2£­2ab£­6a+6b+9µÄÖµ¡£

29£®Ö¤Ã÷58-1½â±»20¡×30Ö®¼äµÄÁ½¸öÕûÊýÕû³ý

31.¹Û²ìÏÂÁи÷ʽ£º 12+(1¡Á2)2+22=9=32 22+(2¡Á3)2+32=49=72 32+(3¡Á4)2+42=169=132 ¡­¡­

Äã·¢ÏÖÁËʲô¹æÂÉÇëÓú¬ÓÐn(nΪÕýÕûÊý)µÄµÈʽ±íʾ³öÀ´£¬²¢ËµÃ÷ÆäÖеĵÀÀí. 32.ÔĶÁÏÂÁÐÒòʽ·Ö½âµÄ¹ý³Ì£¬ÔٻشðËùÌá³öµÄÎÊÌ⣺ 1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)] =(1+x)2(1+x) =(1+x)3

(1)ÉÏÊö·Ö½âÒòʽµÄ·½·¨ÊÇ £¬¹²Ó¦ÓÃÁË ´Î.

(2)Èô·Ö½â1+x+x(x+1)+x(x+1)2+¡­+ x(x+1)2004£¬ÔòÐèÓ¦ÓÃÉÏÊö·½·¨ ´Î£¬½á¹ûÊÇ .

(3)·Ö½âÒòʽ£º1+x+x(x+1)+x(x+1)2+¡­+ x(x+1)n(nΪÕýÕûÊý).

34£®Èôa¡¢b¡¢cΪ¡÷ABCµÄÈý±ß£¬ÇÒÂú×ãa2+b2+c2£­ab£­bc£­ca=0¡£Ì½Ë÷¡÷ABCµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ¡£

35£®ÔĶÁÏÂÁмÆËã¹ý³Ì£º

99¡Á99+199=992+2¡Á99+1=£¨99+1£©2=100 2=10 4 1£®¼ÆË㣺

999¡Á999+1999=____________=_______________=___________=___________£» 9999¡Á9999+19999=__________=_______________=______________=__________¡£ 2£®²ÂÏë99¡Á99+µÈÓÚ¶àÉÙд³ö¼ÆËã¹ý³Ì¡£ 36.ÓÐÈô¸É¸ö´óСÏàͬµÄСÇòÒ»¸ö°¤Ò»¸ö°Ú·Å£¬¸ÕºÃ°Ú³ÉÒ»¸öµÈ±ßÈý½ÇÐÎ(Èçͼ1)£»½«ÕâЩСÇò»»Ò»ÖÖ°Ú·¨£¬ÈÔÒ»¸ö°¤Ò»¸ö°Ú·Å£¬ÓָպðڳÉÒ»¸öÕý·½ÐÎ(Èçͼ2).ÊÔÎÊ£ºÕâÖÖСÇò×îÉÙÓжàÉÙ¸ö