20.·Ö½âÒòʽ£º(1)
(3) ¨C2x2n-4xn
122
axy+2axy+2a (2)(x2-6x)2+18(x2-6x)+81 221£®½«ÏÂÁи÷ʽ·Ö½âÒòʽ£º
£¨1£©4m2?9n2£» £¨2£©9(m?n)2?16(m?n)2£» £¨3£©m4?16n4£»
22£®·Ö½âÒòʽ£¨1£©(x?y)2?10(x?y)?25£» £¨2£©16a4?72a2b2?81b4£»
23.Óüò±ã·½·¨¼ÆË㣺
(1)¡Á+¡Á (2)39¡Á37-13¡Á34
£¨3£©£®?
171717?19.8??2.5? 31313124£®ÊÔ˵Ã÷£ºÁ½¸öÁ¬ÐøÆæÊýµÄƽ·½²îÊÇÕâÁ½¸öÁ¬ÐøÆæÊýºÍµÄ2±¶¡£
25£®Èçͼ£¬ÔÚÒ»¿é±ß³¤ÎªaÀåÃ×µÄÕý·½ÐÎÖ½°åËĽǣ¬¸÷¼ôÈ¥Ò»¸ö±ß³¤Îª b(b<ÀåÃ×µÄÕý·½ÐΣ¬ÀûÓÃÒòʽ·Ö½â¼ÆËãµ±a=£¬b=ʱ£¬Ê£Óಿ·ÖµÄÃæ»ý¡£
a)2b
26£®½«ÏÂÁи÷ʽ·Ö½âÒòʽ
11£¨1£©a3m?n?am?nb2n(m?n,ÇÒ¾ùΪ×ÔÈ»Êý)
273
a £¨2£©x3n?1yn?1?2x2n?1y2n?1?xn?1y3n?1£» £¨12£©£®x6n+2+2x3n+2+x2
(3)4a2b2?(a2?b2)2
(5)(1?a2)(1?b2)?(a2?1)2(b2?1)2
(6)(ax?by)2?(ay?bx)2?2(ax?by)(ay?bx)
(7)(x2?y2)2?(z2?x2)2?(y2?z2)2 (8)625b4?(a?b)4
(9)(x2?b2?y2?a2)2?4(ab?xy)2 £¨10£©(x2+y2)2-4x2y2
(4)(c2?a2?b2)2?4a2b2
£¨13£©£®9(a+1)2(a-1)2-6(a2-1)(b2-1)+(b+1)2(b-1)2
27.ÒÑÖª(4x-2y-1)2+xy?2=0£¬Çó4x2y-4x2y2+xy2µÄÖµ.
28£®ÒÑÖª£ºa=10000£¬b=9999£¬Çóa2+b2£2ab£6a+6b+9µÄÖµ¡£
29£®Ö¤Ã÷58-1½â±»20¡×30Ö®¼äµÄÁ½¸öÕûÊýÕû³ý
31.¹Û²ìÏÂÁи÷ʽ£º 12+(1¡Á2)2+22=9=32 22+(2¡Á3)2+32=49=72 32+(3¡Á4)2+42=169=132 ¡¡
Äã·¢ÏÖÁËʲô¹æÂÉÇëÓú¬ÓÐn(nΪÕýÕûÊý)µÄµÈʽ±íʾ³öÀ´£¬²¢ËµÃ÷ÆäÖеĵÀÀí. 32.ÔĶÁÏÂÁÐÒòʽ·Ö½âµÄ¹ý³Ì£¬ÔٻشðËùÌá³öµÄÎÊÌ⣺ 1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)] =(1+x)2(1+x) =(1+x)3
(1)ÉÏÊö·Ö½âÒòʽµÄ·½·¨ÊÇ £¬¹²Ó¦ÓÃÁË ´Î.
(2)Èô·Ö½â1+x+x(x+1)+x(x+1)2+¡+ x(x+1)2004£¬ÔòÐèÓ¦ÓÃÉÏÊö·½·¨ ´Î£¬½á¹ûÊÇ .
(3)·Ö½âÒòʽ£º1+x+x(x+1)+x(x+1)2+¡+ x(x+1)n(nΪÕýÕûÊý).
34£®Èôa¡¢b¡¢cΪ¡÷ABCµÄÈý±ß£¬ÇÒÂú×ãa2+b2+c2£ab£bc£ca=0¡£Ì½Ë÷¡÷ABCµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ¡£
35£®ÔĶÁÏÂÁмÆËã¹ý³Ì£º
99¡Á99+199=992+2¡Á99+1=£¨99+1£©2=100 2=10 4 1£®¼ÆË㣺
999¡Á999+1999=____________=_______________=___________=___________£» 9999¡Á9999+19999=__________=_______________=______________=__________¡£ 2£®²ÂÏë99¡Á99+µÈÓÚ¶àÉÙд³ö¼ÆËã¹ý³Ì¡£ 36.ÓÐÈô¸É¸ö´óСÏàͬµÄСÇòÒ»¸ö°¤Ò»¸ö°Ú·Å£¬¸ÕºÃ°Ú³ÉÒ»¸öµÈ±ßÈý½ÇÐÎ(Èçͼ1)£»½«ÕâЩСÇò»»Ò»ÖÖ°Ú·¨£¬ÈÔÒ»¸ö°¤Ò»¸ö°Ú·Å£¬ÓָպðڳÉÒ»¸öÕý·½ÐÎ(Èçͼ2).ÊÔÎÊ£ºÕâÖÖСÇò×îÉÙÓжàÉÙ¸ö