?1?×ÛÉÏ,a¡Ê?£¬£«¡Þ?. ?2?
a22£¨ax2£2£©£¨x£1£©
12.(1)½â f(x)µÄ¶¨ÒåÓòΪ(0,£«¡Þ),f¡ä(x)£½a££2£«3£½. xxxx3
µ±a¡Ü0ʱ,x¡Ê(0,1)ʱ,f¡ä(x)>0,f(x)µ¥µ÷µÝÔö,x¡Ê(1,£«¡Þ)ʱ,f¡ä(x)<0,f(x)µ¥µ÷µÝ¼õ. µ±a>0ʱ,f¡ä(x)£½¢Ù0 a£¨x£1£©? ?x£x3? 2?? ??x£« a?? 2? a? ?. a>1, µ±x¡Ê(0,1)»òx¡Ê?µ±x¡Ê?1£¬¢Úa£½2ʱ,¢Ûa>2ʱ,0<µ±x¡Ê? ?? a2? £¬£«¡Þ?ʱ,f¡ä(x)>0,f(x)µ¥µ÷µÝÔö, ? ?? 2? a?a?ʱ,f¡ä(x)<0,f(x)µ¥µ÷µÝ¼õ. 2 £½1,ÔÚx¡Ê(0,£«¡Þ)ÄÚ,f¡ä(x)¡Ý0,f(x)µ¥µ÷µÝÔö. 2 <1,µ±x¡Ê?0£¬a?? 2? ?»òx¡Ê(1,£«¡Þ)ʱ,f¡ä(x)>0,f(x)µ¥µ÷µÝÔö, a? ?? 2 a£¬1?ʱ,f¡ä(x)<0,f(x)µ¥µ÷µÝ¼õ. ?? ×ÛÉÏËùÊö,µ±a¡Ü0ʱ,f(x)ÔÚ(0,1)ÄÚµ¥µ÷µÝÔö,ÔÚ(1,£«¡Þ)ÄÚµ¥µ÷µÝ¼õ£» µ±0 2? ?ÄÚµ¥µ÷µÝ¼õ,ÔÚ a? ??? a2? £¬£«¡Þ?ÄÚµ¥µ÷µÝÔö£» ? µ±a£½2ʱ,f(x)ÔÚ(0,£«¡Þ)ÄÚµ¥µ÷µÝÔö£» µ±a>2ʱ,f(x)ÔÚ?0£¬?? 2???ÄÚµ¥µ÷µÝÔö,ÔÚ? a?? a2? £¬1?ÄÚµ¥µ÷µÝ¼õ,ÔÚ(1,£«¡Þ)ÄÚµ¥µ÷µÝÔö. ? (2)Ö¤Ã÷ ÓÉ(1)Öª,a£½1ʱ, f(x)£f¡ä(x)£½x£ln x£« 2x£1?122?312 £?1££2£«3?£½x£ln x£«£«2£3£1,x¡Ê[1,2]. 2 x? xxx? xxx312 Éèg(x)£½x£ln x,h(x)£½£«2£3£1,x¡Ê[1,2],Ôòf(x)£f¡ä(x)£½g(x)£«h(x).ÓÉg¡ä(x) xxx£½ x£1 ¡Ý0, x¿ÉµÃg(x)¡Ýg(1)£½1, £3x£2x£«6 µ±ÇÒ½öµ±x£½1ʱȡµÃµÈºÅ.ÓÖh¡ä(x)£½. 42 xÉè¦Õ(x)£½£3x£2x£«6,Ôò¦Õ(x)ÔÚx¡Ê[1,2]µ¥µ÷µÝ¼õ. 13 2 ÒòΪ¦Õ(1)£½1,¦Õ(2)£½£10,ËùÒÔ?x0¡Ê(1,2),ʹµÃx¡Ê(1,x0)ʱ,¦Õ(x)>0,x¡Ê(x0,2)ʱ,¦Õ(x)<0. ËùÒÔh(x)ÔÚ(1,x0)ÄÚµ¥µ÷µÝÔö,ÔÚ(x0,2)ÄÚµ¥µ÷µÝ¼õ. 11 ÓÉh(1)£½1,h(2)£½,¿ÉµÃh(x)¡Ýh(2)£½, 22µ±ÇÒ½öµ±x£½2ʱȡµÃµÈºÅ. 33 ËùÒÔf(x)£f¡ä(x)>g(1)£«h(2)£½.¼´f(x)>f¡ä(x)£«¶ÔÓÚÈÎÒâµÄx¡Ê[1,2]³ÉÁ¢. 22 13.(1)Ö¤Ã÷ f¡ä(x)£½m(e£1)£«2x. Èôm¡Ý0,Ôòµ±x¡Ê(£¡Þ,0)ʱ,e£1¡Ü0,f¡ä(x)£¼0£»µ±x¡Ê(0,£«¡Þ)ʱ,e£1¡Ý0,f¡ä(x)£¾0. Èôm£¼0,Ôòµ±x¡Ê(£¡Þ,0)ʱ,e£1£¾0,f¡ä(x)£¼0£»µ±x¡Ê(0,£«¡Þ)ʱ,e£1£¼0,f¡ä(x)£¾0. ËùÒÔ,f(x)ÔÚ(£¡Þ,0)µ¥µ÷µÝ¼õ, ÔÚ(0,£«¡Þ)Éϵ¥µ÷µÝÔö. (2)½â ÓÉ(1)Öª,¶ÔÈÎÒâµÄm,f(x)ÔÚ[£1,0]Éϵ¥µ÷µÝ¼õ,ÔÚ[0,1]Éϵ¥µ÷µÝÔö,¹Êf(x)ÔÚx£½0´¦È¡µÃ×îСֵ.ËùÒÔ¶ÔÓÚÈÎÒâx1,x2¡Ê[£1,1],|f(x1)£f(x2)|¡Üe£1 ???f£¨1£©£f£¨0£©¡Üe£1£¬?e£m¡Üe£1£¬ µÄ³äÒªÌõ¼þÊÇ?¼´?£m¢Ù ?f£¨£1£©£f£¨0£©¡Üe£1£¬??e£«m¡Üe£1.? mmxmxmxmxmxÉ躯Êýg(t)£½e£t£e£«1,Ôòg¡ä(t)£½e£1. µ±t£¼0ʱ,g¡ä(t)£¼0£»µ±t£¾0ʱ,g¡ä(t)£¾0.¹Êg(t)ÔÚ(£¡Þ,0)Éϵ¥µ÷µÝ¼õ,ÔÚ(0,£«¡Þ)Éϵ¥µ÷µÝÔö. ÓÖg(1)£½0,g(£1)£½e£«2£e£¼0,¹Êµ±t¡Ê[£1,1]ʱ,g(t)¡Ü0. µ±m¡Ê[£1,1]ʱ,g(m)¡Ü0,g(£m)¡Ü0,¼´¢Ùʽ³ÉÁ¢£» µ±m£¾1ʱ,ÓÉg(t)µÄµ¥µ÷ÐÔ,g(m)£¾0,¼´e£m£¾e£1£» µ±m£¼£1ʱ,g(£m)£¾0,¼´e£«m£¾e£1. ×ÛÉÏ,mµÄȡֵ·¶Î§ÊÇ[£1,1]. 11 14.(1)½â ÒòΪf(x)£½ln(1£«x)£ln(1£x),ËùÒÔf¡ä(x)£½£«,f¡ä(0)£½2. 1£«x1£xÓÖÒòΪf(0)£½0,ËùÒÔÇúÏßy£½f(x)ÔÚµã(0,f(0))´¦µÄÇÐÏß·½³ÌΪy£½2x. 2x?x?2 (2)Ö¤Ã÷ Áîg(x)£½f(x)£2?x£«?,Ôòg¡ä(x)£½f¡ä(x)£2(1£«x)£½2. 1£x?3?ÒòΪg¡ä(x)>0(0 3 4 £m£1 ttm?x?ËùÒÔg(x)>g(0)£½0,x¡Ê(0,1),¼´µ±x¡Ê(0,1)ʱ,f(x)>2?x£«?. ?3? 3 14 ?x?(3)½â ÓÉ(2)Öª,µ±k¡Ü2ʱ,f(x)>k?x£«?¶Ôx¡Ê(0,1)ºã³ÉÁ¢. ?3? kx££¨k£2£©?x?2 µ±k>2ʱ,Áîh(x)£½f(x)£k?x£«?,Ôòh¡ä(x)£½f¡ä(x)£k(1£«x)£½. 2 1£x?3? 4k£2?4k£2? ËùÒÔµ±0 3 4 3 k?k? 4k£2x3??µ±0 k?3? ?x?ËùÒÔµ±k>2ʱ,f(x)>k?x£«?²¢·Ç¶Ôx¡Ê(0,1)ºã³ÉÁ¢. ?3? ×ÛÉÏ¿ÉÖª,kµÄ×î´óֵΪ2. 15.(1)½â ÓÉÒÑÖª,º¯Êýf(x)µÄ¶¨ÒåÓòΪ(0,£«¡Þ),g(x)£½f¡ä(x)£½2(x£a)£2ln x£2?1£«?, 3 ?? a?x? ËùÒÔg¡ä(x)£½2££« ?1??1?2?x£?£«2?a£?22a?2??4? xx2 £½ 2 x2 , 1?1£1£4a??1£«1£4a? µ±0£¼a£¼Ê±,g(x)ÔÚÇø¼ä?0£¬,??£¬£«¡Þ?Éϵ¥µ÷µÝÔö, 422????ÔÚÇø¼ä? ?1£1£4a1£«1£4a? £¬?Éϵ¥µ÷µÝ¼õ£» 22?? 1 µ±a¡Ýʱ,g(x)ÔÚÇø¼ä(0,£«¡Þ)Éϵ¥µ÷µÝÔö. 4 (2)Ö¤Ã÷ ÓÉf¡ä(x)£½2(x£a)£2ln x£2?1£«?£½0,½âµÃa£½ ?? a?x? x£1£ln x, £1 1£«x2 x?x?x?x£1£ln x?x£1£ln ?x£1£ln ?x£1£ln 2 Áî¦Õ(x)£½£2?x£«ln x£«x£2?x£2?£1£1£1???£«1£«x£1, 1£«x???1£«x??1£«x? e£¨e£2£©?e£2?2Ôò¦Õ(1)£½1£¾0,¦Õ(e)£½££2?£1?£¼0, £1 1£«e?1£«e?¹Ê´æÔÚx0¡Ê(1,e),ʹµÃ¦Õ(x0)£½0, Áîa0£½ x0£1£ln x0 ,u(x)£½x£1£ln x(x¡Ý1), £1 1£«x0 x1 ÓÉu¡ä(x)£½1£¡Ý0Öª,º¯Êýu(x)ÔÚÇø¼ä(1,£«¡Þ)Éϵ¥µ÷µÝÔö, ËùÒÔ0£½ u£¨1£©u£¨x0£©u£¨e£©e£2 £¼£1£½a0£¼£1£½£1£¼1,¼´a0¡Ê(0,1), 1£«11£«x01£«e1£«e µ±a£½a0ʱ,ÓÐf¡ä(x0)£½0,f(x0)£½¦Õ(x0)£½0, 15 ÓÉ(1)Öª,f¡ä(x)ÔÚÇø¼ä(1,£«¡Þ)Éϵ¥µ÷µÝÔö, ¹Êµ±x¡Ê(1,x0)ʱ,f¡ä(x)£¼0,´Ó¶øf(x)£¾f(x0)£½0£» µ±x¡Ê(x0,£«¡Þ)ʱ,f¡ä(x)£¾0,´Ó¶øf(x)£¾f(x0)£½0,ËùÒÔ,µ±x¡Ê(1,£«¡Þ)ʱ,f(x)¡Ý0, ×ÛÉÏËùÊö,´æÔÚa¡Ê(0,1),ʹµÃf(x)¡Ý0ÔÚÇø¼ä(1,£«¡Þ)ÄÚºã³ÉÁ¢,ÇÒf(x)£½0ÔÚÇø¼ä(1,£«¡Þ)ÄÚÓÐΨһ½â. 16.(1)½â ÓÉf(x)£½nx£xn,¿ÉµÃf¡ä(x)£½n£nxn£1 £½n(1£xn£1 ). ÆäÖÐn¡ÊN* ,ÇÒn¡Ý2,ÏÂÃæ·ÖÁ½ÖÖÇé¿öÌÖÂÛ£º ¢Ùµ±nÎªÆæÊýʱ.Áîf¡ä(x)£½0,½âµÃx£½1,»òx£½£1. µ±x±ä»¯Ê±,f¡ä(x),f(x)µÄ±ä»¯Çé¿öÈçÏÂ±í£º x (£¡Þ,£1) (£1,1) (1,£«¡Þ) f¡ä(x) £ £« £ f(x) ËùÒÔ,f(x)ÔÚ(£¡Þ,£1),(1,£«¡Þ)Éϵ¥µ÷µÝ¼õ,ÔÚ(£1,1)ÄÚµ¥µ÷µÝÔö. ¢Úµ±nΪżÊýʱ. µ±f¡ä(x)£¾0,¼´x£¼1ʱ,º¯Êýf(x)µ¥µ÷µÝÔö£» µ±f¡ä(x)£¼0,¼´x£¾1ʱ,º¯Êýf(x)µ¥µ÷µÝ¼õ£» ËùÒÔ,f(x)ÔÚ(£¡Þ,1)Éϵ¥µ÷µÝÔö,ÔÚ(1,£«¡Þ)Éϵ¥µ÷µÝ¼õ. (2)Ö¤Ã÷ ÉèµãPµÄ×ø±êΪ(x0,0),Ôòx0£½n1n£1 ,f¡ä(x2 0)£½n£n. ÇúÏßy£½f(x)ÔÚµãP´¦µÄÇÐÏß·½³ÌΪy£½f¡ä(x0)(x£x0),¼´g(x)£½f¡ä(x0)(x£x0). ÁîF(x)£½f(x)£g(x),¼´F(x)£½f(x)£f¡ä(x0)(x£x0),ÔòF¡ä(x)£½f¡ä(x)£f¡ä(x0). ÓÉÓÚf¡ä(x)£½£nxn£1 £«nÔÚ(0,£«¡Þ)Éϵ¥µ÷µÝ¼õ, ¹ÊF¡ä(x)ÔÚ(0,£«¡Þ)Éϵ¥µ÷µÝ¼õ,ÓÖÒòΪF¡ä(x0)£½0,ËùÒÔµ±x¡Ê(0,x0)ʱ,F¡ä(x)£¾0, µ±x¡Ê(x0,£«¡Þ)ʱ,F¡ä(x)£¼0,ËùÒÔF(x)ÔÚ(0,x0)ÄÚµ¥µ÷µÝÔö, ÔÚ(x0,£«¡Þ)Éϵ¥µ÷µÝ¼õ,ËùÒÔ¶ÔÓÚÈÎÒâµÄÕýʵÊýx, ¶¼ÓÐF(x)¡ÜF(x0)£½0,¼´¶ÔÓÚÈÎÒâµÄÕýʵÊýx,¶¼ÓÐf(x)¡Üg(x). (3)Ö¤Ã÷ ²»·ÁÉèx2 1¡Üx2.ÓÉ(2)Öªg(x)£½(n£n)(x£x0), Éè·½³Ìg(x)£½aµÄ¸ùΪxa2¡ä,¿ÉµÃx2¡ä£½ n£n2£«x0. µ±n¡Ý2ʱ,g(x)ÔÚ(£¡Þ,£«¡Þ)Éϵ¥µ÷µÝ¼õ, ÓÖÓÉ(2)Öªg(x2)¡Ýf(x2)£½a£½g(x2¡ä),¿ÉµÃx2¡Üx2¡ä. ÀàËÆµØ,ÉèÇúÏßy£½f(x)ÔÚԵ㴦µÄÇÐÏß·½³ÌΪy£½h(x),¿ÉµÃh(x)£½nx. µ±x¡Ê(0,£«¡Þ),f(x)£h(x)£½£xn£¼0,¼´¶ÔÓÚÈÎÒâµÄx¡Ê(0,£«¡Þ),f(x)£¼h(x). Éè·½³Ìh(x)£½aµÄ¸ùΪx1¡ä,¿ÉµÃxa1¡ä£½n. 16