ÈýÄê¸ß¿¼Á½ÄêÄ£Äâ¸ß¿¼ÊýѧרÌâ»ã±à µÚÈýÕ µ¼Êý¼°ÆäÓ¦ÓÃ2 Àí ÏÂÔØ±¾ÎÄ

?1?×ÛÉÏ,a¡Ê?£¬£«¡Þ?. ?2?

a22£¨ax2£­2£©£¨x£­1£©

12.(1)½â f(x)µÄ¶¨ÒåÓòΪ(0,£«¡Þ),f¡ä(x)£½a£­£­2£«3£½. xxxx3

µ±a¡Ü0ʱ,x¡Ê(0,1)ʱ,f¡ä(x)>0,f(x)µ¥µ÷µÝÔö,x¡Ê(1,£«¡Þ)ʱ,f¡ä(x)<0,f(x)µ¥µ÷µÝ¼õ. µ±a>0ʱ,f¡ä(x)£½¢Ù0

a£¨x£­1£©?

?x£­x3?

2??

??x£«

a??

2?

a?

?.

a>1,

µ±x¡Ê(0,1)»òx¡Ê?µ±x¡Ê?1£¬¢Úa£½2ʱ,¢Ûa>2ʱ,0<µ±x¡Ê?

??

a2?

£¬£«¡Þ?ʱ,f¡ä(x)>0,f(x)µ¥µ÷µÝÔö,

?

??

2?

a?a?ʱ,f¡ä(x)<0,f(x)µ¥µ÷µÝ¼õ.

2

£½1,ÔÚx¡Ê(0,£«¡Þ)ÄÚ,f¡ä(x)¡Ý0,f(x)µ¥µ÷µÝÔö. 2

<1,µ±x¡Ê?0£¬a??

2?

?»òx¡Ê(1,£«¡Þ)ʱ,f¡ä(x)>0,f(x)µ¥µ÷µÝÔö,

a?

??

2

a£¬1?ʱ,f¡ä(x)<0,f(x)µ¥µ÷µÝ¼õ.

??

×ÛÉÏËùÊö,µ±a¡Ü0ʱ,f(x)ÔÚ(0,1)ÄÚµ¥µ÷µÝÔö,ÔÚ(1,£«¡Þ)ÄÚµ¥µ÷µÝ¼õ£» µ±0

2?

?ÄÚµ¥µ÷µÝ¼õ,ÔÚ

a?

???

a2?

£¬£«¡Þ?ÄÚµ¥µ÷µÝÔö£»

?

µ±a£½2ʱ,f(x)ÔÚ(0,£«¡Þ)ÄÚµ¥µ÷µÝÔö£» µ±a>2ʱ,f(x)ÔÚ?0£¬??

2???ÄÚµ¥µ÷µÝÔö,ÔÚ?

a??

a2?

£¬1?ÄÚµ¥µ÷µÝ¼õ,ÔÚ(1,£«¡Þ)ÄÚµ¥µ÷µÝÔö.

?

(2)Ö¤Ã÷ ÓÉ(1)Öª,a£½1ʱ,

f(x)£­f¡ä(x)£½x£­ln x£«

2x£­1?122?312

£­?1£­£­2£«3?£½x£­ln x£«£«2£­3£­1,x¡Ê[1,2]. 2

x?

xxx?

xxx312

Éèg(x)£½x£­ln x,h(x)£½£«2£­3£­1,x¡Ê[1,2],Ôòf(x)£­f¡ä(x)£½g(x)£«h(x).ÓÉg¡ä(x)

xxx£½

x£­1

¡Ý0, x¿ÉµÃg(x)¡Ýg(1)£½1,

£­3x£­2x£«6

µ±ÇÒ½öµ±x£½1ʱȡµÃµÈºÅ.ÓÖh¡ä(x)£½. 42

xÉè¦Õ(x)£½£­3x£­2x£«6,Ôò¦Õ(x)ÔÚx¡Ê[1,2]µ¥µ÷µÝ¼õ.

13

2

ÒòΪ¦Õ(1)£½1,¦Õ(2)£½£­10,ËùÒÔ?x0¡Ê(1,2),ʹµÃx¡Ê(1,x0)ʱ,¦Õ(x)>0,x¡Ê(x0,2)ʱ,¦Õ(x)<0.

ËùÒÔh(x)ÔÚ(1,x0)ÄÚµ¥µ÷µÝÔö,ÔÚ(x0,2)ÄÚµ¥µ÷µÝ¼õ. 11

ÓÉh(1)£½1,h(2)£½,¿ÉµÃh(x)¡Ýh(2)£½, 22µ±ÇÒ½öµ±x£½2ʱȡµÃµÈºÅ.

33

ËùÒÔf(x)£­f¡ä(x)>g(1)£«h(2)£½.¼´f(x)>f¡ä(x)£«¶ÔÓÚÈÎÒâµÄx¡Ê[1,2]³ÉÁ¢.

22 13.(1)Ö¤Ã÷ f¡ä(x)£½m(e£­1)£«2x.

Èôm¡Ý0,Ôòµ±x¡Ê(£­¡Þ,0)ʱ,e£­1¡Ü0,f¡ä(x)£¼0£»µ±x¡Ê(0,£«¡Þ)ʱ,e£­1¡Ý0,f¡ä(x)£¾0.

Èôm£¼0,Ôòµ±x¡Ê(£­¡Þ,0)ʱ,e£­1£¾0,f¡ä(x)£¼0£»µ±x¡Ê(0,£«¡Þ)ʱ,e£­1£¼0,f¡ä(x)£¾0.

ËùÒÔ,f(x)ÔÚ(£­¡Þ,0)µ¥µ÷µÝ¼õ, ÔÚ(0,£«¡Þ)Éϵ¥µ÷µÝÔö.

(2)½â ÓÉ(1)Öª,¶ÔÈÎÒâµÄm,f(x)ÔÚ[£­1,0]Éϵ¥µ÷µÝ¼õ,ÔÚ[0,1]Éϵ¥µ÷µÝÔö,¹Êf(x)ÔÚx£½0´¦È¡µÃ×îСֵ.ËùÒÔ¶ÔÓÚÈÎÒâx1,x2¡Ê[£­1,1],|f(x1)£­f(x2)|¡Üe£­1

???f£¨1£©£­f£¨0£©¡Üe£­1£¬?e£­m¡Üe£­1£¬

µÄ³äÒªÌõ¼þÊÇ?¼´?£­m¢Ù

?f£¨£­1£©£­f£¨0£©¡Üe£­1£¬??e£«m¡Üe£­1.?

mmxmxmxmxmxÉ躯Êýg(t)£½e£­t£­e£«1,Ôòg¡ä(t)£½e£­1.

µ±t£¼0ʱ,g¡ä(t)£¼0£»µ±t£¾0ʱ,g¡ä(t)£¾0.¹Êg(t)ÔÚ(£­¡Þ,0)Éϵ¥µ÷µÝ¼õ,ÔÚ(0,£«¡Þ)Éϵ¥µ÷µÝÔö.

ÓÖg(1)£½0,g(£­1)£½e£«2£­e£¼0,¹Êµ±t¡Ê[£­1,1]ʱ,g(t)¡Ü0. µ±m¡Ê[£­1,1]ʱ,g(m)¡Ü0,g(£­m)¡Ü0,¼´¢Ùʽ³ÉÁ¢£» µ±m£¾1ʱ,ÓÉg(t)µÄµ¥µ÷ÐÔ,g(m)£¾0,¼´e£­m£¾e£­1£» µ±m£¼£­1ʱ,g(£­m)£¾0,¼´e£«m£¾e£­1. ×ÛÉÏ,mµÄȡֵ·¶Î§ÊÇ[£­1,1].

11

14.(1)½â ÒòΪf(x)£½ln(1£«x)£­ln(1£­x),ËùÒÔf¡ä(x)£½£«,f¡ä(0)£½2.

1£«x1£­xÓÖÒòΪf(0)£½0,ËùÒÔÇúÏßy£½f(x)ÔÚµã(0,f(0))´¦µÄÇÐÏß·½³ÌΪy£½2x. 2x?x?2

(2)Ö¤Ã÷ Áîg(x)£½f(x)£­2?x£«?,Ôòg¡ä(x)£½f¡ä(x)£­2(1£«x)£½2.

1£­x?3?ÒòΪg¡ä(x)>0(0

3

4

£­m£­1

ttm?x?ËùÒÔg(x)>g(0)£½0,x¡Ê(0,1),¼´µ±x¡Ê(0,1)ʱ,f(x)>2?x£«?.

?3?

3

14

?x?(3)½â ÓÉ(2)Öª,µ±k¡Ü2ʱ,f(x)>k?x£«?¶Ôx¡Ê(0,1)ºã³ÉÁ¢. ?3?

kx£­£¨k£­2£©?x?2

µ±k>2ʱ,Áîh(x)£½f(x)£­k?x£«?,Ôòh¡ä(x)£½f¡ä(x)£­k(1£«x)£½. 2

1£­x?3?

4k£­2?4k£­2?

ËùÒÔµ±0

3

4

3

k?k?

4k£­2x3??µ±0

k?3?

?x?ËùÒÔµ±k>2ʱ,f(x)>k?x£«?²¢·Ç¶Ôx¡Ê(0,1)ºã³ÉÁ¢.

?3?

×ÛÉÏ¿ÉÖª,kµÄ×î´óֵΪ2.

15.(1)½â ÓÉÒÑÖª,º¯Êýf(x)µÄ¶¨ÒåÓòΪ(0,£«¡Þ),g(x)£½f¡ä(x)£½2(x£­a)£­2ln x£­2?1£«?,

3

??

a?x?

ËùÒÔg¡ä(x)£½2£­£«

?1??1?2?x£­?£«2?a£­?22a?2??4?

xx2

£½

2

x2

, 1?1£­1£­4a??1£«1£­4a?

µ±0£¼a£¼Ê±,g(x)ÔÚÇø¼ä?0£¬,??£¬£«¡Þ?Éϵ¥µ÷µÝÔö,

422????ÔÚÇø¼ä?

?1£­1£­4a1£«1£­4a?

£¬?Éϵ¥µ÷µÝ¼õ£» 22??

1

µ±a¡Ýʱ,g(x)ÔÚÇø¼ä(0,£«¡Þ)Éϵ¥µ÷µÝÔö.

4

(2)Ö¤Ã÷ ÓÉf¡ä(x)£½2(x£­a)£­2ln x£­2?1£«?£½0,½âµÃa£½

??

a?x?

x£­1£­ln x, £­1

1£«x2

x?x?x?x£­1£­ln x?x£­1£­ln ?x£­1£­ln ?x£­1£­ln 2

Áî¦Õ(x)£½£­2?x£«ln x£«x£­2?x£­2?£­1£­1£­1???£«1£«x£­1, 1£«x???1£«x??1£«x?

e£¨e£­2£©?e£­2?2Ôò¦Õ(1)£½1£¾0,¦Õ(e)£½£­£­2?£­1?£¼0, £­1

1£«e?1£«e?¹Ê´æÔÚx0¡Ê(1,e),ʹµÃ¦Õ(x0)£½0, Áîa0£½

x0£­1£­ln x0

,u(x)£½x£­1£­ln x(x¡Ý1), £­1

1£«x0

x1

ÓÉu¡ä(x)£½1£­¡Ý0Öª,º¯Êýu(x)ÔÚÇø¼ä(1,£«¡Þ)Éϵ¥µ÷µÝÔö, ËùÒÔ0£½

u£¨1£©u£¨x0£©u£¨e£©e£­2

£¼£­1£½a0£¼£­1£½£­1£¼1,¼´a0¡Ê(0,1), 1£«11£«x01£«e1£«e

µ±a£½a0ʱ,ÓÐf¡ä(x0)£½0,f(x0)£½¦Õ(x0)£½0,

15

ÓÉ(1)Öª,f¡ä(x)ÔÚÇø¼ä(1,£«¡Þ)Éϵ¥µ÷µÝÔö, ¹Êµ±x¡Ê(1,x0)ʱ,f¡ä(x)£¼0,´Ó¶øf(x)£¾f(x0)£½0£»

µ±x¡Ê(x0,£«¡Þ)ʱ,f¡ä(x)£¾0,´Ó¶øf(x)£¾f(x0)£½0,ËùÒÔ,µ±x¡Ê(1,£«¡Þ)ʱ,f(x)¡Ý0, ×ÛÉÏËùÊö,´æÔÚa¡Ê(0,1),ʹµÃf(x)¡Ý0ÔÚÇø¼ä(1,£«¡Þ)ÄÚºã³ÉÁ¢,ÇÒf(x)£½0ÔÚÇø¼ä(1,£«¡Þ)ÄÚÓÐΨһ½â.

16.(1)½â ÓÉf(x)£½nx£­xn,¿ÉµÃf¡ä(x)£½n£­nxn£­1

£½n(1£­xn£­1

).

ÆäÖÐn¡ÊN*

,ÇÒn¡Ý2,ÏÂÃæ·ÖÁ½ÖÖÇé¿öÌÖÂÛ£º

¢Ùµ±nÎªÆæÊýʱ.Áîf¡ä(x)£½0,½âµÃx£½1,»òx£½£­1. µ±x±ä»¯Ê±,f¡ä(x),f(x)µÄ±ä»¯Çé¿öÈçÏÂ±í£º

x (£­¡Þ,£­1) (£­1,1) (1,£«¡Þ) f¡ä(x) £­ £« £­ f(x) ËùÒÔ,f(x)ÔÚ(£­¡Þ,£­1),(1,£«¡Þ)Éϵ¥µ÷µÝ¼õ,ÔÚ(£­1,1)ÄÚµ¥µ÷µÝÔö. ¢Úµ±nΪżÊýʱ.

µ±f¡ä(x)£¾0,¼´x£¼1ʱ,º¯Êýf(x)µ¥µ÷µÝÔö£» µ±f¡ä(x)£¼0,¼´x£¾1ʱ,º¯Êýf(x)µ¥µ÷µÝ¼õ£»

ËùÒÔ,f(x)ÔÚ(£­¡Þ,1)Éϵ¥µ÷µÝÔö,ÔÚ(1,£«¡Þ)Éϵ¥µ÷µÝ¼õ. (2)Ö¤Ã÷ ÉèµãPµÄ×ø±êΪ(x0,0),Ôòx0£½n1n£­1

,f¡ä(x2

0)£½n£­n. ÇúÏßy£½f(x)ÔÚµãP´¦µÄÇÐÏß·½³ÌΪy£½f¡ä(x0)(x£­x0),¼´g(x)£½f¡ä(x0)(x£­x0). ÁîF(x)£½f(x)£­g(x),¼´F(x)£½f(x)£­f¡ä(x0)(x£­x0),ÔòF¡ä(x)£½f¡ä(x)£­f¡ä(x0). ÓÉÓÚf¡ä(x)£½£­nxn£­1

£«nÔÚ(0,£«¡Þ)Éϵ¥µ÷µÝ¼õ,

¹ÊF¡ä(x)ÔÚ(0,£«¡Þ)Éϵ¥µ÷µÝ¼õ,ÓÖÒòΪF¡ä(x0)£½0,ËùÒÔµ±x¡Ê(0,x0)ʱ,F¡ä(x)£¾0, µ±x¡Ê(x0,£«¡Þ)ʱ,F¡ä(x)£¼0,ËùÒÔF(x)ÔÚ(0,x0)ÄÚµ¥µ÷µÝÔö, ÔÚ(x0,£«¡Þ)Éϵ¥µ÷µÝ¼õ,ËùÒÔ¶ÔÓÚÈÎÒâµÄÕýʵÊýx,

¶¼ÓÐF(x)¡ÜF(x0)£½0,¼´¶ÔÓÚÈÎÒâµÄÕýʵÊýx,¶¼ÓÐf(x)¡Üg(x). (3)Ö¤Ã÷ ²»·ÁÉèx2

1¡Üx2.ÓÉ(2)Öªg(x)£½(n£­n)(x£­x0), Éè·½³Ìg(x)£½aµÄ¸ùΪxa2¡ä,¿ÉµÃx2¡ä£½

n£­n2£«x0.

µ±n¡Ý2ʱ,g(x)ÔÚ(£­¡Þ,£«¡Þ)Éϵ¥µ÷µÝ¼õ, ÓÖÓÉ(2)Öªg(x2)¡Ýf(x2)£½a£½g(x2¡ä),¿ÉµÃx2¡Üx2¡ä.

ÀàËÆµØ,ÉèÇúÏßy£½f(x)ÔÚÔ­µã´¦µÄÇÐÏß·½³ÌΪy£½h(x),¿ÉµÃh(x)£½nx. µ±x¡Ê(0,£«¡Þ),f(x)£­h(x)£½£­xn£¼0,¼´¶ÔÓÚÈÎÒâµÄx¡Ê(0,£«¡Þ),f(x)£¼h(x). Éè·½³Ìh(x)£½aµÄ¸ùΪx1¡ä,¿ÉµÃxa1¡ä£½n.

16