2019年全国各地中考数学试题分类汇编之专题18 图形的展开与叠折(含解析) 下载本文

故答案是:

【点评】本题运用了弧长公式和圆的周长公式,建立准确的等量关系是解题的关键.

三.解答题

1 (2019?湖南岳阳?10分)操作体验:如图,在矩形ABCD中,点E.F分别在边AD.BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF上一动点(不与E.F重合),过点P分别作直线BE.BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN. (1)如图1,求证:BE=BF;

(2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长;

(3)类比探究:若DE=a,CF=b.

①如图3,当点P在线段EF的延长线上运动时,试用含A.b的式子表示QM与QN之间的数量关系,并证明;

②如图4,当点P在线段FE的延长线上运动时,请直接用含A.b的式子表示QM与QN之间的数量关系.(不要求写证明过程)

【分析】(1)证明∠BEF=∠BFE即可解决问题(也可以利用全等三角形的性质解决问题即可).

(2)如图2中,连接BP,作EH⊥BC于H,则四边形ABHE是矩形.利用面积法证明PM+PN=EH,利用勾股定理求出AB即可解决问题.

(3)①如图3中,连接BP,作EH⊥BC于H.由S△EBP﹣S△BFP=S△EBF,可得BE?PM

第 9 页 共 14 页

﹣?BF?PN=?BF?EH,由BE=BF,推出PM﹣PN=EH=问题.

,由此即可解决

②如图4,当点P在线段FE的延长线上运动时,同法可证:QM﹣QN=PN﹣PM=

【解答】(1)证明:如图1中,

∵四边形ABCD是矩形, ∴AD∥BC, ∴∠DEF=∠EFB,

由翻折可知:∠DEF=∠BEF, ∴∠BEF=∠EFB, ∴BE=BF.

(2)解:如图2中,连接BP,作EH⊥BC于H,则四边形ABHE是矩形,EH=AB.

∵DE=EB=BF=5,CF=2, ∴AD=BC=7,AE=2,

在Rt△ABE中,∵∠A=90°,BE=5,AE=2, ∴AB=

∵S△BEF=S△PBE+S△PBF,PM⊥BE,PN⊥BF, ∴?BF?EH=?BE?PM+?BF?PN, ∵BE=BF,

第 10 页 共 14 页

∴PM+PN=EH=,

∵四边形PMQN是平行四边形,

∴四边形PMQN的周长=2(PM+PN)=2

(3)①证明:如图3中,连接BP,作EH⊥BC于H.

∵ED=EB=BF=a,CF=b, ∴AD=BC=a+b, ∴AE=AD﹣DE=b, ∴EH=AB=

∵S△EBP﹣S△BFP=S△EBF,

∴BE?PM﹣?BF?PN=?BF?EH, ∵BE=BF, ∴PM﹣PN=EH=

∵四边形PMQN是平行四边形, ∴QN﹣QM=(PM﹣PN)=

②如图4,当点P在线段FE的延长线上运动时,同法可证:QM﹣QN=PN﹣PM=

【点评】本题属于四边形综合题,考查了矩形的性质和判定,翻折变换,等腰三角形的性质,平行四边形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,学会利用面积法证明线段之间的关系,属于中考压轴题.

2 (2019?湖南衡阳?12分)如图,在等边△ABC中,AB=6cm,动点P从点A出发以lcm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作

第 11 页 共 14 页

PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE. (1)当t为何值时,△BPQ为直角三角形;

(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由; (3)求DE的长;

(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.

【分析】(1)当BQ=2BP时,∠BPQ=90°,由此构建方程即可解决问题. (2)如图1中,连接BF交AC于M.证明EF=2EM,由此构建方程即可解决问题. (3)证明DE=AC即可解决问题.

(4)如图3中,连接AM,AB′.根据AB′≥AM﹣MB′求解即可解决问题. 【解答】解:(1)∵△ABC是等边三角形, ∴∠B=60°,

∴当BQ=2BP时,∠BPQ=90°, ∴6+t=2(6﹣t), ∴t=3,

∴t=3时,△BPQ是直角三角形.

(2)存在.

理由:如图1中,连接BF交AC于M.

第 12 页 共 14 页