2010Êýѧ½¨Ä£ÂÛÎÄ¡¶ÊäÓ͹ܵIJ¼Öá·½âÎö ÏÂÔØ±¾ÎÄ

3.»ù±¾¼ÙÉè

£¨1£©ÊäÓ͹ÜÔÚÔËÊä¹ý³ÌÖв»´æÔÚ°²È«ÎÊÌâ¡££¨Èç³ÉÆ·ÓÍÒòζȸߵͶø³öÏÖµÄÄý¹Ì»òÒò»Ó·¢ÅòÕ͵ȣ©

£¨2£©Á¶Óͳ§µ½³µÕ¾µÄ·¶ÎΪƽµØ¡£

4 ¶¨Òå·ûºÅ˵Ã÷

xi±íʾµØÀíλÖÃÉϵĺáÏò¾àÀë¡£ yi±íʾµØÀíλÖÃÉϵÄ×ÝÏò¾àÀë¡£

a±íʾAÁ¶Óͳ§µ½Ìú·µÄ¾àÀë¡£

b±íʾBÁ¶Óͳ§µ½Ìú·µÄ¾àÀë¡£

c±íʾAÁ¶Óͳ§µ½³ÇÊÐÓë½¼Çø»®·ÖÏߵľàÀë¡£

l±íʾAÁ¶Óͳ§µ½BÁ¶Óͳ§µÄˮƽ¾àÀë¡£ A±íʾAÁ¶Óͳ§µÄµØÀíλÖᣠB±íʾBÁ¶Óͳ§µÄµØÀíλÖá£

C±íʾ¹ýAµã×÷´¹Ö±ÓÚÌú·µÄÖ±ÏߵĴ¹×ã¡£ D±íʾ¹ýBµã×÷´¹Ö±ÓÚÌú·µÄÖ±ÏߵĴ¹×ã¡£ E±íʾ³µÕ¾É趨µÄλÖá£

m±íʾÆÌÉè·Ç¹²ÓùܵÀµÄÿ¹«ÀïµÄ·ÑÓá£

k±íʾÆÌÉè¹²ÓùܵÀµÄÿ¹«ÀïµÄ·ÑÓá£

s±íʾÆÌÉè·Ç¹²ÓùܵÀÓë¹²ÓùܵÀ·ÑÓÃÏàͬʱµÄµ¥¹«Àï·ÑÓá£

5Ä£Ðͽ¨Á¢ºÍÇó½â

ÎÊÌâ1ÒªÇóÔÚÌú·ÏßÒ»²à½¨ÔìÁ½¼ÒÁ¶Óͳ§£¬Í¬Ê±ÔÚÌú·ÏßÉÏÔö½¨Ò»¸ö³µÕ¾£¬ÓÃÀ´ÔËËÍ³ÉÆ·ÓÍ¡£Õë¶ÔÁ½Á¶Óͳ§µ½Ìú·Ïß¾àÀëºÍÁ½Á¶Óͳ§¼ä¾àÀëµÄ¸÷ÖÖ²»Í¬ÇéÐΣ¬Ìá³öÉè¼Æ·½°¸¡£ÈôÓй²ÓùÜÏߣ¬Ó¦¿¼Âǹ²ÓùÜÏß·ÑÓÃÓë·Ç¹²ÓùÜÏß·ÑÓÃÏàͬ»ò²»Í¬µÄÇéÐΡ£

µÚ 2 Ò³ ¹² 26 Ò³

ÕâÀïÒª¿¼ÂÇÈý¸ö·½Ã棬·Ö±ðÊǹܵÀµÄ¹²Óúͷǹ²Ó㬹²ÓùÜÏß·ÑÓÃÓë·Ç¹²ÓùÜÏß·ÑÓÃÏàͬ»ò²»Í¬£¬ÒÔ¼°Á½¸öÁ¶Óͳ§µÄλÖùØÏµ¡£

¾­¹ý·ÖÎö£¬ÎÒÃÇ¿ÉÒÔ°ÑÇé¿ö´óÌå·ÖΪÁ½À࣬·Ö±ðÊǹܵÀ¹²Óúͷǹ²ÓùܵÀ¡£ÆäÖзǹ²ÓùܵÀÊDz»ÐèÒª¿¼Âǹ²ÓùÜÏß·ÑÓÃÓë·Ç¹²ÓùÜÏß·ÑÓÃÏàͬ»ò²»Í¬µÄÇéÐΡ£

²»º¬¹²ÓùܵÀµÄÓÐÈýÖÖÇé¿ö£¬Ä¿±êº¯Êý·Ö±ðÊÇ£º

Q?m(a2?x12?x22?b2)£¨¼û¸½Í¼2£© £¨¼û¸½Í¼3£© £¨¼û¸½Í¼4£©

Q?m[a2?x12?(l?x1)2?b2]Q?m[(l?x2)2?a2?x22?b2]1.ÔËÓÃMATLAB¶ÔÏ£º

Q?m(a2?x12?x22?b2)Çóµ¼£¨±à³Ì¼û¸½Â¼5£©£¬½á¹ûÈç

Q'?f?m??a2?x12??m?x2122?b2?

?dfdx1?x1a?xm2

dfdx2?x2b?x¡£

222

x1?0x2?0 ´úÈëµÃ·ÑÓÃQ=m*(a+b) 2.¶Ô

Q?m[a2?x12?(l?x1)2?b2]Çóµ¼£º

Q'?f?m??a2?x12???x21?2x1?1??b2£»

???10.5£» dfdx1?m???2x1?2??22?xa2?x2?x1?2x1?1?b1?1?aax1??»òx1??

a?ba?bQ=m*[´úÈëµÃ·ÑÓà 3.¶Ô

bb2*(a+b)2?1+(l?)?b2]a+ba+b¡£

Q?m[(l?x2)2?a2?x22?b2]Çóµ¼£º

µÚ 3 Ò³ ¹² 26 Ò³

Q'?f?m?22a2?x2?2x2?1?x2?b2£»

???x20.5dfdx2??2x2?2??2?£» ?222x2?b?a?x2?2x2?1?x2?Q=m*[bb»òx2?? a?ba?b´úÈëµÃ·ÑÓÃ

m*[bb2*(a+b)2?1+(l?)?a2]a+ba+b»ò

bb2*(a?b)2?1?(l?)?a2]a?ba?b

º¬Óй²ÓùܵÀµÄÇé¿öÖпÉÒÔ·ÖΪÁ½À࣬·Ö±ðÊǹ²ÓùÜÏß·ÑÓÃÓë·Ç¹²ÓùÜÏß·ÑÓÃÏàͬ»ò²»Í¬µÄÇéÐΡ£

¹²ÓùܵÀÓë·Ç¹²ÓùܵÀ·ÑÓò»ÏàͬµÄÓÐËÄÖÖÇé¿ö£¬Ä¿±êº¯Êý·Ö±ðÊÇ£º 1.

Q?m[x12?(a?p)2?x22?(b?p)2]?kp£¨¼û¸½Í¼5£©

2.

Q?ak?(b?a)m£¨¼ûͼ6£©

3.

Q?m[x12?(a?p)2?(l?x1)2?(b?p)2]?kp£¨¼û¸½Í¼7)

4.

Q?m*[x12?(b?p)2?(l?x1)2?(a?p)2?k*P]£¨¼û¸½Í¼8£©

ͬÀí·Ö±ð¶ÔËĸöÄ¿±êº¯ÊýÇ󵼵õ½£º 1.ÔËÓÃMATLAB¶ÔÏ£º

`Q?m[x12?(a?p)2?x22?(b?p)2]?kp Çóµ¼,½á¹ûÈç

Q?f?m*x12+a2-2*a*p+p2?x22?b2?2*b*p?p2?k*px1?0x2?0

´úÈëµÃ·ÑÓÃQ=m*(a+b+2*P)

2.¶ÔQ?ak?(b?a)mµÄ×Ü·ÑÓÃÊÇÒ»¸ö¶¨Öµ¡£ 3.¶Ô

Q?m[x12?(a?p)2?(l?x1)2?(b?p)2]?kpÇ󵼵õ½£º

µÚ 4 Ò³ ¹² 26 Ò³

Q`=f=m*(x12+a2-2*a*p+p2+x12+2*x1*l+l2?b2?2*b*p+p2)?k*p

dfdx1?m*1x12+a2-2*a*p+p2*x1?2*x1?2*l2*x12?2*x1*l?l2?b2?2*b*p?p2

x1?p-ap-ax1?a+b-2*p a-b »ò

Q=m*[´úÈëµÃ·ÑÓÃ

m*[a-pa-p2*(a?b)2?1+(l+)?(b?p)2]+k*Pa-ba-b»ò

a?pa?p*(a?b?2*p)2?1?(l?)2?(b?p)2]?k*pa?b?2*pa?b?2*pQ?m*[x12?(b?p)2?(l?x1)2?(a?p)2?k*P]

4.¶ÔÇ󵼵õ½£º

Q`?f?m*[x12+b2-2*b*p+p2?x12?2*x1*l?l2?a2?2*a*p?p2]?k*P

dfdx1?m*1x12+a2-2*a*p+p2*x1?2*x1?2*l2*x12?2*x1*l?l2?b2?2*b*p?p2

l*(p?b)l*(b?p)x1?a?b»òa?b?2*p

Q=m*[´úÈëµÃ·ÑÓÃ

m*[b-pb-p2*(a?b)2?1+(l+)?(a?p)2]+k*Pa-ba-b»ò

b?pb?p*(a?b?2*p)2?1?(l?)2?(a?p)2]?k*pa?b?2*pa?b?2*p

¹²ÓùܵÀÓë·Ç¹²ÓùܵÀ·ÑÓÃÏàͬµÄÓÐËÄÖÖÇé¿ö£¬Ä¿±êº¯Êý·Ö±ðÊÇ£º 1.2.3.

Q?s[x12?(a?p)2?x22?(b?p)2]?sp£¨¼û¸½Í¼5£©

Q?sa?s?b?a?£¨¼ûͼ6£©

£¨¼û¸½Í¼7£©

Q?s[x12?(a?p)2?(l?x1)2?(b?p)2]?spµÚ 5 Ò³ ¹² 26 Ò³