高等数学(黄立宏)(第三版)习题七课后答案 下载本文

故OM={

111,?,3}. 4423619. 已知点P到点A(0,0,12)的距离是7,OP的方向余弦是,,,求点

777P的坐标.

解:设P的坐标为(x, y, z), |PA|2?x2?y2?(z?12)2?49 得x2?y2?z2??95?24z

cos??zx2?y2?z2?67 ? z5701?6, z2?49 又cos??xx2?y2?z2?27 ? x2, x1901?2?49 cos??y3285x2?y2?z2?7 ? y1?3, y2?49 故点P的坐标为P(2,3,6)或P(19049,28549,57049). 20. 已知a, b的夹角??2π3,且a?3,b?4,计算: (1) a·b; (2) (3a-2b)·(a + 2b).

解:(1)a·b =cos??|a|?|b|?cos2π13?3?4??2?3?4??6

(2) (3a?2b?)a(?2b?)a3?a?6a?b?2b?a? 4b?b?3|a|2?4a?b?4|b|2 ?3?32?4?(?6)?4?16

??61.21. 已知a =(4,-2, 4), b=(6,-3, 2),计算:

(1)a·b; (2) (2a-3b)·(a + b); (3)|a?b|2解:(1)a?b?4?6?(?2)?(?3)?4?2?38 (2) (2a?3b)?(a?b)?2a?a?2a?b?3a?b?3b?b

?2|a|2?a?b?3|b|2?2?[42?(?2)2?42]?38?3[62?(?3)2?22] ?2?36?38?3?49??113(3) |a?b|2?(a?b)?(a?b)?a?a?2a?b?b?b?|a|2?2a?b?|b|2

157

?36?2?38?49?9

22. 已知四点A(1,-2,3),B(4,-4,-3),C(2,4,3),D(8,6,6),

求向量AB在向量CD上的投影. 解:AB={3,-2,-6},CD={6,2,3}

PrjCDAB?AB?CDCD?3?6?(?2)?2?(?6)?362?22?324??.

723. 若向量a+3b垂直于向量7a-5b,向量a-4b垂直于向量7a-2b,求a和b的夹角. 解: (a+3b)·(7a-5b) =7|a|2?16a?b?15|b|2?0 ① (a-4b)·(7a-2b) = 7|a|2?30a?b?8|b|2?0 ②

a?ba?b1(a?b)21由①及②可得:2?2??22?

|a||b|2|a||b|4又a?b?1a?b1|b|2?0,所以cos???, 2|a||b|21π?. 2324. 设a=(-2,7,6),b=(4, -3, -8),证明:以a与b为邻边的平行四边形的两条对角线互相垂直.

证明:以a,b为邻边的平行四边形的两条对角线分别为a+b,a-b,且 a+b={2,4, -2} a-b={-6,10,14}

又(a+b)·(a-b)= 2×(-6)+4×10+(-2)×14=0 故(a+b)?(a-b).

25. 已知a =3i+2j-k, b =i-j+2k,求: (1) a×b; (2) 2a×7b; (3) 7b×2a; (4) a×a.

故??arccos2?1?1332解:(1) a?b?i?j?k?3i?7j?5k

?12211?1(2) 2a?7b?14(a?b)?42i?98j?70k

(3) 7b?2a?14(b?a)??14(a?b)??42i?98j?70k (4) a?a?0.

26. 已知向量a和b互相垂直,且|a|?3, |b|?4.计算: (1) |(a+b)×(a-b)|;

(2) |(3a+b)×(a-2b)|.

158

(1)|(a?b)?(a?b)?|a?a?a?b?b?a?b?b|?|?2(a?b)|

?2|a|?|b|?sinπ?24 2(2) |(3a?b)?(a?2b)|?|3a?a?6a?b?b?a?2b?b|?|7(b?a)|

π?84 227. 求垂直于向量3i-4j-k和2i-j +k的单位向量,并求上述两向量夹角的正弦.

?7?3?4?sin解:a?b??4?1?133?4i?j?k??5i?5j?5k

?11122?1a?b3??(?i?j?k) |a?b|3与a?b平行的单位向量e?sin??|a?b|53513. ??|a|?|b|2626?628. 一平行四边形以向量a =(2,1,-1)和b=(1,-2,1)为邻边,求其对角线夹角的正

弦.

解:两对角线向量为

l1?a?b?3i?j,l2?a?b?i?3j?2k 因为|l1?l2|?|2i?6j?10k|?140, |l1|?10, |l2|?14 所以 sin??|l1?l2|140??1.

|l1||l2|10?14即为所求对角线间夹角的正弦.

29. 已知三点A(2,-1,5), B(0,3,-2), C(-2,3,1),点M,N,P分别是AB,BC,CA

1的中点,证明:MN?MP?(AC?BC).

4证明:中点M,N,P的坐标分别为

31M(1,1,), N(?1,3,?), P(0,1,3)

22MN?{?2,2,?2}

3MP?{?1,0,}

2AC?{?4,4,?4} BC?{?2,0,3}

159

2?2?2?2?22MN?MP?03i?3j?k?3i?5j22?1?10?2k AC?BC?4?403i??443?2j??44?20k?12i?20j?8k 故 MN?MP?14(AC?BC).

ijk30.(1)解: a?b?axayazbxbybz

=(aybz-az)by+(iazb-x)axb(z+jax-b)y aybxk 则( a?b)?C=(aybz-azby)Cx+(azbx-axbz)Cy+(axby-aybx)Cyaxayaz ?bxbybz CxCyCz 若 a,b,C共面,则有 a?b后与 C是垂直的. 从而

( a?b)?C?0 反之亦成立. axayaz (2) (a?b)?C?bxbybz CxCyCzbxbybz (b?C)?a?CxCyCz axayazCxCyCz ( C?a)?b?axayaz bxbybz由行列式性质可得:

axayazbxbybzCxCyCz bxbybz?CxCyC?zaxay azCxCyCzaxayazbxbybz

故 (a?b)?C?(b?C)?a?( C?a)?

160