儿童学习数学 下载本文

对家长来说,对孩子进行数学教育既要考虑到儿童思维发展的特点和数学学科知识的特点,又要充分利用家庭生活的优势。而树立以下三个观念对家长来说至关重要:

第一,逻辑观念的重要性远甚于数字的记忆。不必担心幼儿不会数数、不会计算,这都是由于他们还没有获得相应的逻辑观念。家长与其让幼儿死记硬背那些无法理解的数学,不如给幼儿提供有价值的逻辑经验。如,配对的活动可以发展幼儿的对应观念,排序的活动可以发展幼儿的序列观念,分类的活动可以发展幼儿的包含观念,等等。这些看起来和数学无关,却是幼儿学习数学所必备的基础。 第二,立足具体经验,指向抽象概念。数学的本质在于抽象。但是幼儿的抽象数学概念不是凭空而来的,它必须建立在具体的经验基础之上。所以不要急于让幼儿进行抽象的符号化的数学运算,而要充分利用具体的实物,让幼儿获取数学经验。当幼儿有了丰富的数学经验之后,即便大人不教,他们也会举一反三。如幼儿经常有平分物体的经验(分蛋糕、分糖块、分苹果……等),他就很容易理解数学中的“二等分”的概念。遇到其它类似的问题,他也会主动迁移自己的知识。在幼儿阶段,不应强求计算的速度,而要注重给幼儿丰富的经验。

第三,生活是幼儿数学知识的源泉。幼儿的数学知识来源于他的实际生活。幼儿在生活中遇到的是真实、具体的问题,真正是他“自己”的问题,因而最容易被幼儿所理解,解决起来也比大人给他的那些问题容易得多。同时,当幼儿真正有意识地用数学方法解决生活中的问题时,他们对数学的应用性也会有更直接的体验,从而真正理解数学和生活的关系。例如,数字可以表示什么意思?面对抽象的数字符号,幼儿很难理解“数字就是表示多少”。但我们可以和孩子一起去寻找:生活中哪里有数字?它们表示什么?这样幼儿就很会得到很多具体而丰富的认识。

8.我孩子的数学能力为什么会比同龄的孩子差?

很多家长会因为自己孩子“数学能力差”而苦恼。他们会因此而给孩子“补课”,但往往又发现,自己怎么教都教不会孩子!

应该承认,这样的现象确实存在。从儿童发展的整体来看,个别差异的存在显然是一个正常现象。而在数学学习领域,这种个别差异性似乎表现得更为明显。这是为什么呢?

我们认为,这和数学知识的特点是分不开的。如前所述,儿童的数学学习和他的逻辑思维能力发展的关系密切。换言之,数学这个学习领域也就最容易表现出儿童思维发展水平的个别差异。因此我们就会看到,即使是年龄相仿的两个孩子,他们的数学能力也会有差异。 如果自己的孩子数学能力“差”,作为家长应该怎么办呢?

请注意:在这里我们给“差”加了引号!之所以这样做是因为,我们认为儿童数学能力在发展过程中所表现出来的“差”,并不能简单地断定他就一定是“差”,更不能给他贴上一个“数学能力差”的标签。否则,不仅对孩子的发展不利,对家长的心态也不利。

作为家长,应该认识到:每个孩子数学能力的发展,都遵循着同样的规律和步骤,即从动作水平的操作到抽象水平的运算。而在发展的具体过程中,则会表现出一定的差异,即有的孩子需要比别人更长的时间的时间来实现这一“飞跃”。对于这样的孩子,用“拔苗助长”的方法显然是不能奏效的,反过来,成人应该采取承认、跟随和等待的策略。具体地说:

首先,承认孩子的发展水平。有的家长看到别的孩子能够算“几加几”,而自己的孩子却还要借助于手指,就觉得很恼火,甚至粗暴地阻止孩子用手指算,这样做是不合适的。事实上,孩子这样做,恰恰说明他的发展水平还处在一个依赖于动作的阶段。

其次,跟随孩子的发展过程。也就是要提供适合孩子现有水平的学习内容和学习方式,并密切注意其发展的表现。在适当的时候,我们可以向孩子提出更高的要求。

最后,我们还应该拥有一份等待的心情。要相信,数学不是教会的,而是孩子自己的“发明”。我们的任务是为他们创设适宜性的学习和发展环境,等待他们的发展。按照心理学家皮亚杰的观点,儿童在

较低的发展水平上停留较多的时间并不是一件坏事。它可以给孩子提供更多的具体经验,使得他今后的发展建立在更为坚实的基础之上。

9. 怎样发现孩子是否具有数学方面的潜能?

我们常常听到家长或老师报告,某某孩子的数学能力超群。真的有这样的事情吗?

不可否认,会有少数数学能力超常的孩子存在。事实上,每个孩子都是一个独特的个体,有其独特的发展表现。儿童之间的个别差异,既表现为发展速度和水平上的差异,也表现为发展的优势领域不同。有的孩子具有较好的数理逻辑能力,也有的孩子具有较强的空间方位能力,还有的孩子具有人际交往方面的天赋,等等。这正是每个人的独特性所在。只是由于我们的文化较多关注人们的数理逻辑能力,所以才导致具有这方面能力倾向的孩子被贴上“聪明”的标签。

在我们这个重视“数理逻辑能力”的文化背景下,几乎每个家长都希望自己的孩子具有较好的数学能力,希望知道自己的孩子究竟是不是具有数学方面的潜能。那究竟应该如何看待数学潜能的问题呢? 首先,应该以一种“平常心”来看待儿童的数学潜能。如果把所以的儿童看成是一个整体的话,那些“不教自会”的“数学超常”的孩子只是其中很少一部分。而对于绝大多数孩子来说,他们也同样具有发展的潜能。

其次,要用科学的方法来发现和鉴别“数学超常”的孩子。不能仅仅凭这个孩子会算很多题目就断定他的数学能力超常,事实上这样的孩子很可能是父母教出来的。而对于那些父母没有教过的问题,他们的反应和平常孩子并没有什么两样。我们所指的具有超常数学能力的孩子,通常具有一种对逻辑关系的敏感性,以及较强的抽象能力。他们能够很快地领悟事物之间的逻辑或数学关系,并进行抽象的思考。而这种能力是很难直接教会的。

第三,对于数学能力超常的孩子,我们要为他们提供适宜的学习环境,以促进其进一步发展,同时也要关注其非智力因素的协调发展。既要为他们提供需要抽象思考的具有挑战性的问题,又要帮助他们体会到数学的乐趣在于不断地思考,避免他们产生一种智力上的优越感。

10. 为什么我的孩子对于学数学没有兴趣?怎样培养孩子对数学的兴趣?

很多家长抱怨自己的孩子对数学没有兴趣:“每次我教他数学,他都不愿意听!”甚至有的家长担心自己的孩子不爱学习,以致忧心忡忡。究竟是怎么回事呢?

殊不知,与音乐、舞蹈、绘画乃至科学等内容相比,数学知识的确有它的特殊之处。数学既不像自然物那样具备外在的形象,也不像科学现象那样发生奇幻的变化,更不像艺术作品那样富于动人的旋律或鲜艳的色彩,儿童一般不会自发地对事物背后抽象的数学属性产生兴趣。他们感兴趣的多是那些色彩鲜明、形象生动、变化多端的事物。

但是,如果我们选择恰当的教育内容,采用得当的方法,并加以适当的引导,同样可以激发儿童对数学的兴趣。以下方法可供参考:

第一,从色彩鲜明、形象生动的具体物体入手,逐渐引导孩子认识事物背后抽象的数学属性。例如,引导孩子从具体的事物形象中寻找有哪些几何图形,或从一堆物体中发现其中的数量属性。 第二,从孩子生活中熟悉和感兴趣的事物、事件入手,而不是从抽象的数学问题入手。如果我们直接让孩子去答那些算式题目,他们当然会觉得厌烦,但是如果是生活中和他的利益休戚相关的问题(比如分糖果),孩子也许就会主动地去寻求解决了。

第三,从可操作的活动入手,避免单纯的口头问答和数数。好动是孩子的天性。我们可以通过数数、摆放、排队、对应等具体的操作活动,来激发孩子动手操作的愿望。我们也可以设计一些纸笔活动(但不是写算式),完成作业单的任务也是孩子所喜欢的事情哦!

总之,尽管数学没有吸引儿童兴趣的外在特征,我们也可运用各种方法,引导儿童参与到数学操作的

活动中。当儿童在具体操作活动中真正体验到数学内在的魅力,就会使这种对数学操作活动的外在的兴趣转变成对数学本身的内在的兴趣。这种兴趣不仅是对数学知识的兴趣,更是一种对理智活动和思维活动的兴趣。它会对儿童现在和今后学习数学的态度产生深远的影响。 11.儿童是怎样学会数数的?

我想你大概会认为数数是一件很简单、很容易的事。不错,在成人的眼里确实如此。但是你还记得小时侯学习计数的那段经历吗?你一定会说早就忘却了。那么就让我们从头开始,亲自把这个过程再做一遍并在头脑里细细地回味一下,你就能体会到孩子是怎样学会数数的了。

去把你孩子放杂物的那个抽屉端来,假设里面有各种画片、扑克、数字卡还有识字卡。请你数数里面有多少张识字卡片。

首先,你要在心中弄清楚要数的是什么样的卡片。于是你会撇开那些画片、扑克和数字卡,寻找那种正面是实物图画、反面是相应汉字的识字卡片——求同。

然后,你开始把识字卡片挑出来放在一起,把不是识字卡片的留在了抽屉里——分类。

第三步,你发现识字卡片有的重叠在一起不便于清点,于是你将它们一张一张分开,或干脆把它们排成了一排。这样就不至于在数的时候漏数或重复地数了——排列。

第四步,你开始数那些识字卡了。你在数卡片时,早已知道用哪些数词来数并且知道这些数词的习惯顺序:“一、二、三……”——回忆数词。

第五步,你在每念出一个数词时,就用手指点一下被数到的卡片,把数词和卡片一一对应起来——配对。 第六步,当你数到最后一张卡片时念出的数词假定是“17”,于是你就会说有十七张识字卡片。你有没有注意,原先你点到的最后一张卡是第十七张,可是当你说有十七张卡片的时候,这个“十七”却包括了刚才数过的所有卡片!这是数数的最后一个步骤——从序数到基数的转换。

所以看起来简单的一件事情,却包含了这么复杂的过程,即:①通过求同找出物体的共同属性。②通过分类把物体分成具有某种属性和不具有某种属性的部分。③将要数的物体进行排列。④按习惯回忆数词。⑤按顺序把物体和数词一一配对。⑥把最后数到的一个数词当作基数来使用。

事实上,儿童学习数数也是一个漫长的发展过程。根据心理学的研究,儿童大致经历了以下发展阶段:口头数数,按物点数,说出总数。

口头数数阶段:儿童多数都像背儿歌似的背诵数字,带有顺口溜的性质,有时还会出现脱漏数字或循环重复数字的现象。他们并没有形成数词与实物间的一一对应关系,也不理解数的实际意义。

按物点数阶段:也就是一边数数、一边点物。起初,儿童的这两个动作往往是不一致的,逐渐发展到能够手口一致地点数。但是这一阶段的儿童还不能说出总数。

说出总数阶段:这时儿童能理解数到最后一个物体,它所对应的数词就表示这一组物体的总数,也就是在数词与物体的数量之间建立起联系。一般来说,5岁左右的孩子,都能发展到这个阶段。

12.儿童是怎样学会计算的?

当你看到邻家与宝宝同龄的孩子能演算加减算式题时,是否也动了教教自家孩子做算式题的念头?但是结果也许会让你沮丧:你发现宝宝看着桌上的三块巧克力和又添上的两块巧克力,点一点数就说出有五块了,可他却不会做“3+2=?”的算式,即使你告诉了答案,过两天他又不会做了。于是你不免会感到疑惑:儿童是怎样学会计算的?那就让我们一起来看看儿童加减运算概念发展的一般特点吧。

儿童加减运算概念发展总的趋向是从具体到抽象,这与儿童思维发展的趋势是一致的。我们可将儿童加减运算概念的发展分为三个阶段或三种水平:动作水平的加减、表象水平的加减和概念水平的加减。 孩子最初面临的加减运算问题都发生在日常生活中。例如:宝宝(4岁半)上午吃了两个果冻,下午又来要两个,妈妈只给了一个,并对她说不能吃得太多。于是宝宝把上午吃的和下午吃的果冻盒合在一块数了数,嘟着嘴嚷嚷:“人家才吃三个嘛。”像宝宝这样以实物等直观材料为工具,借助于合并、分开等动作进

行的加减运算就是动作水平上的加减运算。动作水平的加减能力是建立在初步的数概念基础和基本的计数能力基础上的运算水平。所有的孩子都将经历这一阶段,并在这一水平上停留相当长的一段时间。成人不可能也不必要人为地缩短孩子的这一进程。有句俗话说“磨刀不误砍柴工”,对儿童来说,没有积累丰富的动作水平的加减操作经验,孩子就难以进入到第二个水平??表象水平的运算。 什么叫表象水平的运算呢?请看下面的实例:

大山妈问5岁的大山:“咱家芦花鸡下了几个蛋了?”大山正剥着豆,他仰着脑袋转着眼珠嘀咕着:“前天数的时候是7个,这两天又下了两个,那就是(他低下头看着自己的两个手指)8……9,没错,妈——应该有9个蛋了。”

在这个实例中,大山不需要把鸡蛋箩拿出来看着数,仅在头脑里回忆出先有了7个蛋,用两个手指代表又下的两个蛋,再以7为起点,看着手指逐一计数得到运算结果。这已与前面提到的宝宝的运算水平很不一样——不需要用实物逐一从头点数,只借助物体在头脑中的形象即表象为依托。但大山运用的实际上是“顺接数”的方法(即在7的基础上继续接数),还不是用数群进行加减(即把7和2两个数群相加)。这种依托物体形象的运算就是表象水平的运算。学前期的孩子大多还处于上述两种运算水平上。

而作为最高水平的运算??概念水平上的加减就是以数群与数群的直接运算为特征的。孩子在运算过程中已无需依靠实物的直观作用或以表象为依托,他们能够理解算式中每个符号的意义,知道同一道算式可以代表众多的类似情景(如“3+2=?”的算式可以表示无数具体的事情),而且还能自如地运用算式进行运算。这是一种高水平的加减运算能力。

孩子在经历了上述三个过程之后,我们就可以认为他学会了加减。这里要提醒你注意的是,不能以为孩子能够进行概念水平的运算就说明他不再需要动作水平和表象水平的运算了。在遇到较复杂的数量关系或较大数量的计算时,孩子仍需借助前两种运算方式。

13.量和数有什么不同?儿童是怎样认识量的?

平日里,我们经常是把“数”和“量”联系在一起使用的。这两个概念之间有什么不同呢?儿童是怎样认识量的?让我们一一来讨论。

我们知道,数可以表示事物的多少或事物的次序。而说到对“量”的认识,却似乎不像对数的认识那样清晰。在我们身边,存在着各种各样的量:你正拿着的这本书有长度、有宽度还有厚度,它与你看的其他一些书籍比较,封面也许正好一样大,也许比某几本杂志要小些。孩子跑过来了,要帮你把许多暂时不看的书抱到书橱里,你关照孩子一次少抱几本,因为你担心孩子的小胳膊承受不了书的份量。孩子抱了一趟很快折回来,你提醒孩子别跑,慢慢走……从以上描述中,你可以体会到客观世界中的各种事物都具有量的特征。就像我们每天生活在数的世界中一样,我们每天也同样生活在量的世界中,数和量似乎没法分开。 然而,量与数的确是有区别的。有人对“量”做了这样的规定:“量是事物存在的规模和发展的程度。量可以分为不连续量(分离量)和连续量(相关量)两种。”像书籍的本数、孩子的人数都是不连续量,而长度、体积、时间、速度等都是连续量。量是可以通过测量等手段来加以认识的,事物具有的量的特征称量度,量度通常是用量数和单位量来表示的。”由此说来,如果说“数”(我们这里指的是自然数)是用来标示事物个数和次序的标记,那么“量”就是标示事物性状的单位。

孩子其实从很小的时候就在日常生活中与量打交道了。最初,孩子对量的特征的认识更多凭借的是自己的感觉,他们能知觉到物体的大小差异,但对其他的量的认识还没有分化,因此他们把诸如长短、宽窄、厚薄等量的差别一概说成“大”和“小”。另外他们对量的认识也不具备相对性,常常把物体的“大”或“小”看成是物体的绝对特征而非比较的结果。 孩子到了4—5岁,随着思维水平的提高和语言的迅速发展,他们能够比较精细地区分出物体的长短、高矮、粗细,会用不同的词语表达不同的量,能判断相等量,会按量的差异进行排序,但还不能达到量的守恒。5—6岁时,孩子对量的认识精确性进一步提高,对量的相对性也有了较好的了解,同时还能用一些简单的工具来帮助解决量的比较和测量任务。

总之,孩子对量的认识表现出从直观感知到抽象概念的认识过程:对量的差异性感知从明显的差异到不明