高等数学(上)
第一章 函数与极限
1.
?6?设
?4??
4???|sinx|,|x|??3?(x)????0,|x|?3?, 求
????????????、???、????、?(2).
??1?()?sin?662
2??2?()?sin?442??2?(?)?sin(?)?4??2??04
22. 设f?x?的定义域为?0,1?,问:⑴f?x?; ⑵f?sinx?;
⑶f?x?a??a?0?; ⑷f?x?a??f?x?a? ?a?0?的定义域是什么?
1?; (1)0?x?1知-1?x?1,所以f(x)的定义域为?-1,22(2)由0?sinx?1知2k??x?(2k?1)?(k?Z),?2k?,(2k?1)??所以f(sinx)的定义域为
?-a,1?a?所以f(x?a)的定义域为?0?x?a?1?-a?x?1?a(4)由?知?从而得0?x?a?1a?x?1?a??1?a,1?a?当0?a?时,定义域为21当a?时,定义域为?2(3)由0?x?a?1知-a?x?1?a
3. 设
?1?f?x???0??1?x?1x?1x?1,g?x??e,求f?g?x??和g?f?x??,
x并做出这两个函数的图形。
?1,g(x)?1?1,x?0??1.)f[g(x)]??0,g(x)?1从而得f[g(x)]??0,x?0???1,x?0?1,g(x)?1??2.)g[f(x)]?ef(x)?e,x?1????1,x?1??1??e,x?1
4. 设数列
limxnyn?0.n???xn?有界, 又
limyn?0,n?? 证明:
M???xn?有界,??M?0,对?n,有xn?M又?limyn?0,即???0,?N(自然数),当n?N时,有yn?n??从而xnyn?0?xn.yn?M.?M?? ?结论成立。5. 根据函数的定义证明:
⑴
lim?3x?1??8x?3
????0,要使3x?1?8?3x?3??,只要x?3?即可。3故???0,取?=,当0?x?3??时,恒有3x?1?8??成立3所以lim(3x?1)?8x?3?
(2)
x???limsinxx?0
1???0,要使sinxx?x??,只要x?sinxx?即可。故取X?2sinxx?01?2,
当x?X时,恒有?0??成立,所以limx?36. 根据定义证明: 当x?0时,函数y?1?x2x是无穷大.问x应满足什么条件时,才能使
y?10?
4?M?0,要使故取?=1?2x111?2???2?M,只要x?即可。xxxM?2,当0?x??时,有1?2x?M成立x?M?21?2x所以lim??x?0x
要使y?104,只要x?1即可。104?27. 求极限: ⑴
x2?3limx?3x2?1=0
⑵ ⑶
2?x?h??x2limh?0h=limh(2xh?h)?2x
h?0x2?xlim4x??x?3x2?1=0
=
n(n?1)12lim?n??2n2(4) (5) (6)
lim1?2????n?1?n??n2
3??1lim???x?11?x1?x3??=
1?x?x2?3lim??1x?1(1?x)(1?x?x2)limx3?2x2x?2?x?2?2=?
8. 计算下列极限: ⑴ ⑵
limx2sinx?01x=0 =lim1.arctanx?0 xx??limarctanxx??x9. 计算下列极限: ⑴ ⑵ ⑶
limsin?xx?0x?x=limsin.??? ?xx?0limtan3xx?0x1=limsinx3x.cos?3 3xx?01?cos2xlimx?0xsinx3x=
2sin2xlim?2x?0x.sinxx?2?2?lim?(1?)?x?0x??
?e?62?(4)lim??1??= xx???6??