=
ÆäÖÐ
£¨fx£¬fy£©+ j
£¨fx£¬fy£©
£¨fx£¬fy£©= ? [?£¨x1£¬y1£©]¡£ ¾Ï£¶û²®ÌØÂ˲¨Æ÷£¬ÆµÆ×ÃæºóµÄ¹â
·Ö²¼ÎªT¡¯£¨fx£¬fy£©= T£¨fx£¬fy£©¡¤H£¨ff £¬fy£©
j
£¨fx£¬fy£© fx 0
= 0 fx 0 - j£¨fx£¬fy£© fx 0
ÏñƽÃæ¹â³¡¸´Õñ·ùΪ £¨ÒÔÏÂÎÞ°ÑÎÕ£© t¡¯£¨x3£¬y3£©= ? -1[T¡¯£¨fx£¬fy£©]
j?£¨-x3£¬-y3£© x3 0
= 0 x3 0 - j?£¨-x3£¬-y3£© x3 0
¹âÇ¿·Ö²¼Îª I = t¡¯¡¤ t¡¯?
-? 2£¨-x3£¬-y3£© x3 0 = 0 x3 0 ? 2£¨-x3£¬-y3£© x3 0
£¨´Ë½áÂÛºÍÓÚÃÀÎÄÊéÉϵĴ𰸲»Ò»Ñù£¬½¨ÒéÈ¡Ïû´ËÌ⣩
8£®5 Èçͼ8-55Ëùʾ£¬ÔÚ¼¤¹âÊø¾Í¸¾µ»á¾ÛµÄ½¹µãÉÏ£¬·ÅÖÃÕë¿×Â˲¨Æ÷£¬¿ÉÒÔÌṩһ¸ö±È
½Ï¾ùÔȵÄÕÕÃ÷¹â³¡£¬ÊÔ˵Ã÷ÆäÔÀí¡£
Õë¿× L ¼¤¹âÆ÷
ͼ8.55£¨Ìâ8.5 ͼ£©
8£®6 ¹âÕ¤µÄ¸´Õñ·ù͸¹ýÂÊΪ
t£¨x£©= cos 2¦Ðf0 x
°ÑËü·ÅÔÚ4f ϵͳÊäÈëƽÃæP1ÉÏ£¬ÔÚƵÆ×ÃæP2ÉϵÄij¸öÒ»¼¶Æ×λÖ÷ÅÒ»¿é¦Ë/ 2λÏà°å£¬ÇóÏñÃæµÄÇ¿¶È·Ö²¼¡£
½â´ð£º½«¸´Õñ·ù͸¹ýÂʺ¯Êý±ä»»Îª
t£¨x£©= cos 2¦Ðf0 x = [1+cos 2¦Ðf0 x ] / 2 ÆäƵÆ×Ϊ
T£¨fx£©= ? [t£¨x£©]
11?£¨fx£©+ ? [cos 2¦Ðf0 x] 22111 = ?£¨fx£©+ ?£¨fx- f0£©+ ?£¨fx+ f0£©
244 = ÆäÖеÚÒ»ÏîΪÁ㼶Æ×£¬ºóÁ½ÏîÒÔ´ÎΪ+1¼¶ºÍ-1¼¶Æס£É轫¦Ë/ 2λÏà°å·ÅÔÚ+1
¼¶Æ×ÉÏ£¬Æä͸¹ýÂʱí´ïΪ
H£¨fx£©= exp£¨j¦Ð£© ÔòƵÆ×ÃæP2ºóµÄ¹âÕñ·ù±äΪ T¡¯= T¡¤H
111?£¨fx£©+ ?£¨fx- f0£©¡¤exp£¨j¦Ð£©+ ?£¨fx+ f0£© 244111 = ?£¨fx£©- ?£¨fx- f0£©+ ?£¨fx+ f0£©
244 =
ÏñƽÃæ¹â³¡¸´Õñ·ùΪ
t¡¯£¨x£©= ? -1 [T¡¯] =
111 - exp£¨j2¦Ðf0x3£©+ exp£¨-j2¦Ðf0x3£© 24411 = - j sin£¨2¦Ðf0x3£©
22 t¡¯£¨x£©
2 = t¡¯£¨x£©¡¤ t¡¯£¨x£©?
ÏñƽÃæÇ¿¶È·Ö²¼Îª
I = =
1[1- j sin£¨2¦Ðf0x3£©][1+ j sin£¨2¦Ðf0x3£©] 411 =+ sin2£¨2¦Ðf0x3£© 44ÏñƽÃæµÃµ½µÄÈÔÊÇÒ»ÖÜÆÚº¯Êý£¬ÆäÖÜÆÚËõС1±¶£¬Õñ·ù¼õС4±¶£¬±¾µ×Ò²ÓÐËù±ä»¯£¬²¢ÇÒ³öÏÖͼÐεĺáÏòλÒÆ£¬Î»ÒÆÁ¿Îª1/2ÖÜÆÚ¡£
8£®7 ÔÚÓÃһάÕýÏÒ¹âդʵÏÖÁ½¸öͼÏóÏà¼Ó»òÏà¼õµÄÏà¸É´¦ÀíϵͳÖУ¬ÉèͼÏóA¡¢BÖÃÓÚ
ÊäÈëƽÃæP1ÔµãÁ½²à£¬ÆäÕñ·ù͸¹ýÂÊ·Ö±ðΪ£ºtA£¨x1- l£¬y1£©ºÍ tB£¨x1+ l£¬y1£©£»P2ƽÃæÉϹâÕ¤µÄ¿Õ¼äƵÂÊΪf0£¬ËüÓëlµÄ¹ØϵΪ£ºf0 = l /¦Ëf£¬ÆäÖЦ˺Íf ·Ö±ð±íʾÈëÉä¹âµÄ²¨³¤ºÍ͸¾µµÄ½¹¾à£»ÓÖÉè×ø±êԵ㴦ÓÚ¹âÕ¤ÖÜÆÚµÄ1/4´¦£¬¹âÕ¤µÄÕñ·ù͸¹ýÂʱíʾΪ£º
G(x2,y2)?
1????1?expj(2?fx?)??02?2?2??????exp??j(2?f0x2?)?2??
ÊÔ´ÓÊýѧÉÏÖ¤Ã÷£º
1£©ÔÚÊä³öƽÃæµÄÔµãλÖõõ½Í¼ÏóA¡¢BµÄÏà¼õÔËË㣻
2£©µ±¹âÕ¤ÔµãÓë×ø±êÔµãÖغÏʱ£¬ÔÚÊä³öƽÃæµÃµ½ËüÃǵÄÏà¼ÓÔËËã¡£ 8£®8 ÈçºÎʵÏÖͼÐÎO1ºÍO2µÄ¾í»ýÔËË㣿»³ö¹â·ͼ²¢Ð´³öÏàÓ¦µÄÊýѧ±í´ïʽ¡£ ½â´ð£ºµÚÒ»²½£¬ÖÆ×÷O1µÄ¸µÀïÒ¶±ä»»È«Ï¢Í¼£¬¹â·ÈçÏ£º (x1£¬y1) L (x2£¬y2) O1 R -b H f f ȫϢͼHµÄ͸¹ýÂÊΪ tH = | 22
1 | + R0+ R01£¨fx£¬fy£©exp_[ -j 2¦Ðfx b] 1
?£¨f£¬f£©exp_[ j 2¦Ðfb] xyx
+R0
ÆäÖÐ
1= ? [O1]£¬R0ΪƽÃæ²Î¿¼²¨µÄÕñ·ù£¬bΪ²Î¿¼µãÔ´µÄºáÏòλÒÆÁ¿¡£
µÚ¶þ²½£¬½øÐоí»ýÔËËã¡£ÔÚ4fϵͳÖУ¬½«O2ÖÃÓÚÊäÈëƽÃ棨x1£¬y1£©£¬È«Ï¢Í¼ÖÃ
ÓÚƵÆ×ƽÃ棨x2£¬y2£©£¬Èçͼ
x1,y1 x2,y2 L1 H L2 O1
O2
O2(x1,y1) O2¼¸ºÎÏñ
O1? O2
f1 f1 ' f2 f2 ' x3,y3
ƵÆ×ÃæºóµÄ¹â³¡Îª UH'= ? [O2]¡¤tH
=
2¡¤{|
22
1 | + R0+ R0
1£¨fx£¬fy£©exp_[ -j 2¦Ðfx b]
+R0
Êä³öƽÃæ¹â³¡Îª
1?£¨fx£¬fy£©exp_[ j 2¦Ðfx b]}
O2? ? -1[ tH]
= R02O2 + O1
O1? O2 + R0O1(x3-b£¬y3)?O2 + R0O1?(-x3-b£¬-y3)?O2
ʽÖеÚÈýÏΪO1 ºÍO2µÄ¾í»ýÔËË㣬λÖÃÔÚx3 = b´¦¡£
8£®9 ÔÚ4fϵͳÖÐÓø´ºÏ¹âÕ¤Â˲¨Æ÷ʵÏÖͼÏóµÄһά΢·Ö ?g / ?x £¬ÈôÊäÈëͼÏógÔÚx·½
ÏòµÄ¿í¶ÈΪl£¬¹âդƵÂÊÓ¦ÈçºÎÑ¡È¡£¿
½â´ð£ºÉ踴ºÏ¹âÕ¤µÄ¿Õ¼äƵÂÊΪf0ºÍf0+£¬ÔòÂ˲¨µÄ½á¹ûʹÏñƽÃæÉϵõ½Á½Ì×ÎïµÄÈý
ÖØÏñ£¬Á½¸öÕýÒ»¼¶ÏñµÄλÏà²îµÈÓڦУ¬ËüÃÇÀëÁ㼶ÏñµÄ½Ç¼ä¾à1¡¢2·Ö±ðÓÉÏÂʽȷ¶¨
sin 1 = f0£¬ £¨1£©
sin 2 =£¨ f0 +£© £¨2£©
Òò¶øÕýÒ»¼¶ÏñÀëÁ㼶ÏñµÄÏß¼ä¾à·Ö±ðΪ
l1 = sin 1¡¤f £¨3£© l2 = sin 2¡¤f £¨4£©
ÆäÖÐfÊÇ͸¾µ½¹¾à¡£·ÖÎö¿ÉÖª£¬µÃµ½Î¢·Ö½á¹ûµÄÌõ¼þÊÇ
l1 - l2 l / 2 £¨lΪÎïµÄ¿í¶È£© £¨5£©
½«£¨1£©¡¢£¨2£©Á½Ê½´úÈ루3£©¡¢£¨4£©Á½Ê½£¬ÔÙ´úÈ루5£©Ê½£¬µÃµ½
l1 - l2 = ¡¤ f l / 2
l2?f £¨6£©
Òò¶ø¸´ºÏ¹âÕ¤µÄ¿Õ¼äƵÂʲîÓ¦Âú×㣨6£©Ê½¹Øϵ£¬²ÅÄܵõ½Î¢·ÖͼÏñ¡£
8£®10 ÓÃ4fϵͳͨ¹ýÆ¥ÅäÂ˲¨Æ÷×÷ÌØÕ÷ʶ±ð£¬Îïg£¨x£¬y£©µÄÆ¥ÅäÂ˲¨Æ÷ΪG*£¨fx£¬fy£©£¬
µ±ÎïÔÚÊäÈëƽÃæÉÏƽÒƺó¿É±íʾΪg£¨x - a£¬ y - b£©£¬ÇóÖ¤´ËʱÊä³öƽÃæÉÏÏà¹ØÁÁµãµÄλÖÃ×ø±êΪxi = a£¬yi = b¡£
8£®11 ÓÃÒ»¸öµ¥Í¸¾µÏµÍ³¶ÔͼÏó½øÐЦȵ÷ÖƼٲÊÉ«±àÂ룬Èçͼ8-55Ëùʾ¡£ÒÑÖªµ÷ÖÆÎïOm
µÄ¹âÕ¤¿Õ¼äƵÂÊΪ100Ïß/mm£¬ÎïÀë͸¾µµÄ¾àÀëΪ20cm£¬Í¼ÏóµÄ¼¸ºÎ¿í¶ÈΪ6 ¡Á 6cm£¬ÊÔÎÊ͸¾µµÄ¿×¾¶ÖÁÉÙÓ¦¶à´ó£¬²ÅÄܱ£Ö¤ÔÚƵÆ×ÃæÉϿɽøÐгɹ¦µÄÂ˲¨²Ù×÷¡££¨¹¤×÷²¨³¤·¶Î§Îª650.0¡ª444.4nm£©¡£ L ƵÆ×Ãæ O' °×¹â Om d f ͼ8.56£¨Ìâ8.11ͼ£© ½â´ð£º
É裺f0 = 100Ïß/mm£¬d = 20cm£¬a¡Áb = 6¡Á6cm£¬max= 650£®0nm£¬min= 444£®4cm Çó£ºÍ¸¾µ×îС¿×¾¶ min ½â£ºµ÷ÖÆÎïOmµÄ×î´óÏ߶ÈΪ
2l =£¨a2+b2£©1/2 = 6¡Ì2cm
l = 3¡Ì2cm
ÓûÔÚƵÆ×ÃæÉϽøÐгɹ¦µÄÂ˲¨²Ù×÷£¬±ØÐëʹËùÓÐÎïµãµÄÒ»¼¶ÑÜÉ䲨¶¼ÄܽøÈë͸ ¾µ£¬×î´óÑÜÉä½Ç¦ÈmaxÓ¦ÓëmaxÏàÓ¦£¬¼´
sin¦Èmax / f0 = max Óɼ¸ºÎ¹ØϵµÃµ½
sin¦Èmax = [£¨ / 2£©- l ] / d ËùÒÔÓÐ
= 2 [d¡¤f0¡¤max + l ] ´úÈëÊý¾Ý£¬µÃ = 110£®85mm ? 111mm
´ð£ºÍ¸¾µ¿×¾¶ÖÁÉÙÓ¦´ïµ½111mm£¬²ÅÄܱ£Ö¤ÔÚƵÆ×ÃæÉϽøÐгɹ¦µÄÂ˲¨²Ù×÷¡£
µÚ¾ÅÕÂÏ°Ìâ½â´ð
9-1. Óð׹âÔÙÏֲʺçȫϢʱ£¬Èç¹û²ÊºçÈ«Ï¢ÓÐʵÏÁ·ìÏó£¬ÔÚÏÁ·ìʵÏ󴦹۲ìȫϢͼ£¬ÈËÑÛ½«Äܹ۲쵽µ¥É«µÄÈ«Ï¢Ïó£¬ÊÔ·ÖÎöÈËÑÛÔÚÏÁ·ìÇ°ºóλÖÃʱµÄÈ«Ï¢ÏóµÄÑÕÉ«·Ö²¼Çé¿ö¡£Èç²ÊºçÈ«Ï¢ÔÙÏÖµÄÊÇÐéÏÁ·ì£¬ÔÙ·ÖÎöÈËÑ۹۲쵽µÄÈ«Ï¢ÏóÇé¿ö¡£ ´ð£º A
M N P
B