ÀëÉ¢Êýѧ×îÈ«¿Îºó´ð°¸£¨ÇüÍñÁá°æ£© ÏÂÔØ±¾ÎÄ

ÀëÉ¢ÊýѧϰÌâ½â 17

ϰÌâËÄ

4.1. ½«ÏÂÃæÃüÌâÓà 0 Ԫν´Ê·ûºÅ»¯: (1)СÍõѧ¹ýÓ¢

ÓïºÍ·¨Óï. (2)³ý·ÇÀÊǶ«±±ÈË, ·ñÔòËûÒ»¶¨ÅÂÀä.

(1) Áî F(x): x ѧ¹ýÓ¢Óï; F(x): x ѧ¹ý·¨Óï; a: СÍõ. ·ûºÅ»¯Îª

F(a)?F(b).

»ò½øÒ»²½Ï¸·Ö, Áî L(x, y): x ѧ¹ý y; a: СÍõ; b1: Ó¢Óï; b2: ·¨Óï. Ôò·ûºÅ»¯Îª

L(a, b1)?L(a, b2).

(2) Áî F(x): x ÊǶ«±±ÈË; G(x): x ÅÂÀä; a: À. ·ûºÅ»¯Îª

?F(a)?G(a) »ò ?G(a)?F(a).

»ò½øÒ»²½Ï¸·Ö, Áî H(x, y): x ÊÇ y µØ·½ÈË; G(x): x ÅÂÀä; a: СÍõ; b: ¶«±±. Ôò·ûºÅ»¯Îª

?H(a, b)?G(a) »ò ?G(a)??H(a, b).

4.2. ÔÚÒ»½×Âß¼­Öн«ÏÂÃæÃüÌâ·ûºÅ»¯, ²¢·Ö±ðÌÖÂÛ¸öÌåÓòÏÞÖÆÎª(a),(b)ʱÃüÌâµÄÕæÖµ:

(1)·²ÓÐÀíÊý¶¼Äܱ» 2 Õû³ý.

(2)ÓеÄÓÐÀíÊýÄܱ» 2 Õû³ý. ÆäÖÐ(a)¸öÌåÓòΪÓÐÀíÊý¼¯ºÏ, (b)¸öÌåÓòΪʵÊý¼¯ºÏ.

(1)(a)ÖÐ, ?xF(x), ÆäÖÐ, F(x): x Äܱ» 2 Õû³ý, ÕæÖµÎª 0.

(b)ÖÐ, ?x(G(x) ?F(x)), ÆäÖÐ, G(x): x ΪÓÐÀíÊý, F(x)ͬ(a)ÖÐ, ÕæÖµÎª 0. (2)(a)ÖÐ, ?xF(x), ÆäÖÐ, F(x): x Äܱ» 2 Õû³ý, ÕæÖµÎª 1.

(b)ÖÐ, ?x(G(x) ?F(x)), ÆäÖÐ, F(x)ͬ(a)ÖÐ, G(x): x ΪÓÐÀíÊý, ÕæÖµÎª 1.

4.3. ÔÚÒ»½×Âß¼­Öн«ÏÂÃæÃüÌâ·ûºÅ»¯, ²¢·Ö±ðÌÖÂÛ¸öÌåÓòÏÞÖÆÎª(a),(b)ʱÃüÌâµÄÕæÖµ: (1)¶ÔÓÚÈÎÒâµÄ x, ¾ùÓÐ x2?2=(x+ 2 )(x????2 ). (2)´æÔÚ x, ʹµÃ x+5=9. ÆäÖÐ(a)¸öÌåÓòΪ×ÔÈ»Êý¼¯ºÏ, (b)¸öÌåÓòΪʵÊý¼¯ºÏ.

(1)(a)ÖÐ, ?x(x2?2=(x+ 2 )(x????2 )), ÕæÖµÎª 1.

(b)ÖÐ, ?x(F(x) ??(x2?2=(x+ 2 )(x????2 )))), ÆäÖÐ, F(x): x ΪʵÊý, ÕæÖµÎª 1. (2)(a)ÖÐ, ?x(x+5=9), ÕæÖµÎª 1.

(b)ÖÐ, ?x(F(x) ??(x+5=9)), ÆäÖÐ, F(x): x ΪʵÊý, ÕæÖµÎª 1.

4.4. ÔÚÒ»½×Âß¼­Öн«ÏÂÁÐÃüÌâ·ûºÅ»¯: (1)ûÓв»Äܱíʾ³É·ÖÊýµÄÓÐÀíÊý. (2)ÔÚ±±¾©Âô²ËµÄÈ˲»È«ÊÇÍâµØÈË.

ÀëÉ¢ÊýѧϰÌâ½â

(3)ÎÚÑ»¶¼ÊǺÚÉ«µÄ. (4)ÓеÄÈËÌìÌì¶ÍÁ¶ÉíÌå.

18

ûָ¶¨¸öÌåÓò, Òò¶øÊ¹ÓÃÈ«×ܸöÌåÓò.

(1) ??x(F(x) ??G(x))»ò?x(F(x) ?G(x)), ÆäÖÐ, F(x): x ΪÓÐÀíÊý, G(x): x Äܱíʾ³É·ÖÊý. (2) ??x(F(x) ?G(x))»ò?x(F(x) ??G(x)), ÆäÖÐ, F(x): x ÔÚ±±¾©Âô²Ë, G(x): x ÊÇÍâµØÈË. (3) ?x(F(x) ?G(x)), ÆäÖÐ, F(x): x ÊÇÎÚÑ», G(x): x ÊǺÚÉ«µÄ. (4) ?x(F(x) ?G(x)), ÆäÖÐ, F(x): x ÊÇÈË, G(x): x ÌìÌì¶ÍÁ¶ÉíÌå.

4.5. ÔÚÒ»½×Âß¼­Öн«ÏÂÁÐÃüÌâ·ûºÅ»¯: (1)»ð³µ¶¼±È

ÂÖ´¬¿ì. (2)ÓеĻ𳵱ÈÓÐµÄÆû³µ¿ì. (3)²»´æÔÚ±ÈËùÓл𳵶¼¿ìµÄÆû³µ. (4)¡°·²ÊÇÆû³µ¾Í±È»ð³µÂý¡±ÊDz»¶ÔµÄ.

ÒòΪûָÃ÷¸öÌåÓò, Òò¶øÊ¹ÓÃÈ«×ܸöÌåÓò

(1) ?x?y(F(x) ?G(y) ?H(x,y)), ÆäÖÐ, F(x): x ÊÇ»ð³µ, G(y): y ÊÇÂÖ´¬, H(x,y):x ±È y ¿ì. (2) ?x?y(F(x) ?G(y) ?H(x,y)), ÆäÖÐ, F(x): x ÊÇ»ð³µ, G(y): y ÊÇÆû³µ, H(x,y):x ±È y ¿ì. (3) ??x(F(x) ??y(G(y) ?H(x,y)))

»ò?x(F(x) ??y(G(y) ??H(x,y))), ÆäÖÐ, F(x): x ÊÇÆû³µ, G(y): y ÊÇ»ð³µ, H(x,y):x ±È y ¿ì. (4) ??x?y(F(x) ?G(y) ?H(x,y))

»ò?x?y(F(x) ?G(y) ??H(x,y) ), ÆäÖÐ, F(x): x ÊÇÆû³µ, G(y): y ÊÇ»ð³µ, H(x,y):x ±È y Âý.

4.6. ÂÔ

4.7. ½«ÏÂÁи÷¹«Ê½·­Òë³É×ÔÈ»ÓïÑÔ, ¸öÌåÓòΪÕûÊý¼¯ ?, ²¢Åжϸ÷ÃüÌâµÄÕæ¼Ù.

(1) ?x?y?z(x ??y = z); (2) ?x?y(x?y = 1).

(1) ¿ÉÑ¡µÄ·­Òë:

¢Ù¡°ÈÎÒâÁ½¸öÕûÊýµÄ²îÊÇÕûÊý.¡±

¢Ú ¡°¶ÔÓÚÈÎÒâÁ½¸öÕûÊý, ¶¼´æÔÚµÚÈý¸öÕûÊý, ËüµÈÓÚÕâÁ½¸öÕûÊýÏà¼õ.¡± ¢Û ¡°¶ÔÓÚÈÎÒâÕûÊý x ºÍ y, ¶¼´æÔÚÕûÊý z, ʹµÃ x ??y = z.¡± Ñ¡¢Û, Ö±½Ó·­Òë, ÎÞÐèÊýÀíÂß¼­ÒÔÍâµÄ֪ʶ. ÒÔÏ·­ÒëÒâ˼Ïàͬ, ¶¼ÊÇ´íµÄ:

??¡°ÓиöÕûÊý, ËüÊÇÈÎÒâÁ½¸öÕûÊýµÄ²î.¡±

??¡°´æÔÚÒ»¸öÕûÊý, ¶ÔÓÚÈÎÒâÁ½¸öÕûÊý, µÚÒ»¸öÕûÊý¶¼µÈÓÚÕâÁ½¸öÕûÊýÏà¼õ.¡± ??¡°´æÔÚÕûÊý z, ʹµÃ¶ÔÓÚÈÎÒâÕûÊý x ºÍ y, ¶¼ÓÐ x ??y = z.¡± Õâ 3 ¸ö¾ä×Ó¶¼¿ÉÒÔ·ûºÅ»¯Îª

?z?x?y(x ??y = z).

0Á¿´Ê˳Ðò²»¿ÉËæÒâµ÷»». (2) ¿ÉÑ¡µÄ·­Òë:

ÀëÉ¢ÊýѧϰÌâ½â

¢Ù¡°Ã¿¸öÕûÊý¶¼ÓÐÒ»¸öµ¹Êý.¡±

¢Ú ¡°¶ÔÓÚÿ¸öÕûÊý, ¶¼ÄÜÕÒµ½ÁíÒ»¸öÕûÊý, ËüÃÇÏà³Ë½á¹ûÊÇÁã.¡± ¢Û ¡°¶ÔÓÚÈÎÒâÕûÊý x, ¶¼´æÔÚÕûÊý y, ʹµÃ x?y = z.¡± Ñ¡¢Û, ÊÇÖ±½Ó·­Òë, ÎÞÐèÊýÀíÂß¼­ÒÔÍâµÄ֪ʶ.

19

4.8. Ö¸³öÏÂÁй«Ê½ÖеÄÖ¸µ¼±äÔª, Á¿´ÊµÄϽÓò, ¸÷¸öÌå±äÏîµÄ×ÔÓɳöÏÖºÍÔ¼Êø³öÏÖ: (3)?x?y(F(x, y) ??G(y, z)) ???xH(x, y, z)

?x?y(F(x, y) ??G(y, z)) ???xH(x, y, z)

ǰ¼þ ?x?y(F(x, y)?G(y, z)) ÖÐ, ??µÄÖ¸µ¼±äÔªÊÇ x, ??µÄϽÓòÊÇ ?y(F(x, y)?G(y, z)); ??µÄÖ¸µ¼±äÔªÊÇ y, ??µÄϽÓò ÊÇ (F(x, y)?G(y, z)).

ºó¼þ ?xH(x, y, z) ÖÐ, ??µÄÖ¸µ¼±äÔªÊÇ x, ??µÄϽÓòÊÇ H(x, y, z).

Õû¸ö¹«Ê½ÖÐ, x Ô¼Êø³öÏÖÁ½´Î, y Ô¼Êø³öÏÖÁ½´Î, ×ÔÓɳöÏÖÒ»´Î; z ×ÔÓɳöÏÖÁ½´Î.

4.9. ¸ø¶¨½âÊÍ I ÈçÏÂ: (a)¸öÌå

Óò DI ΪʵÊý¼¯ºÏ\\.

(b)DI ÖÐÌØ¶¨ÔªËØ?a =0. (c)ÌØ¶¨º¯Êý?f (x,y)=x?y, x,y¡ÊDI.

(d)ÌØ¶¨Î½´Ê?F(x,y): x=y,?G(x,y): x

(4) ?x?y(G(f(x,y),a) ?F(x,y)) (1) ?x?y(x

4.10.¸ø¶¨½âÊÍ I ÈçÏÂ:

(a)¸öÌåÓò D=?(?Ϊ×ÔÈ»Êý).

(b)D ÖÐÌØ¶¨ÔªËØ?a=2.

(c)D ÉϺ¯Êý?f (x,y)=x+y,?g (x,y)=x¡¤y. (d)D ÉÏν´Ê?F (x,y): x=y.

˵Ã÷ÏÂÁй«Ê½ÔÚ I ϵĺ¬Òå, ²¢Ö¸³ö¸÷¹«Ê½µÄÕæÖµ: (1) ?xF(g(x,a),x)

(2) ?x?y(F(f(x,a),y) ?F(f(y,a),x)) (3) ?x?y?z(F(f(x,y),z) (4) ?xF(f(x,x),g(x,x))

ÀëÉ¢ÊýѧϰÌâ½â

(1) ?x(x¡¤2=x), ÕæÖµÎª 0.

(2) ?x?y((x+2=y) ??(y+2=x)), ÕæÖµÎª 0. (3) ?x?y?z(x+y=z),ÕæÖµÎª 1. (4) ?x(x+x=x¡¤x),ÕæÖµÎª 1.

20

4.11.ÅжÏÏÂÁи÷ʽµÄÀàÐÍ:

(1) F(x, y) ??(G(x, y) ??F(x, y)). (3) ?x?yF(x, y) ???x?yF(x, y).

(5) ?x?y(F(x, y) ??F(y, x)).

(1) ÊÇÃüÌâÖØÑÔʽ p ??(q ??p) µÄ´ú»»ÊµÀý, ËùÒÔÊÇÓÀÕæÊ½.

(3) ÔÚijЩ½âÊÍÏÂΪ¼Ù(¾ÙÀý), ÔÚijЩ½âÊÍÏÂÎªÕæ(¾ÙÀý), ËùÒÔÊÇ·ÇÓÀÕæÊ½µÄ¿ÉÂú×ãʽ. (5) ͬ(3).

4.12.P69 12. Éè I Ϊһ¸öÈÎÒâµÄ½âÊÍ, ÔÚ½âÊÍ I ÏÂ, ÏÂÃæÄÄЩ¹«Ê½Ò»¶¨ÊÇÃüÌâ? (1) ?xF(x, y) ???yG(x, y).

(2) ?x(F(x) ??G(x)) ???y(F( y) ??H( y)). (3) ?x(?yF(x, y) ???yG(x, y)).

(4) ?x(F(x) ??G(x)) ??H( y). (2), (3) Ò»¶¨ÊÇÃüÌâ, ÒòΪËüÃÇÊDZÕʽ.

4.13.ÂÔ

4.14.Ö¤Ã÷ÏÂÃæ¹«Ê½¼È²»ÊÇÓÀÕæÊ½Ò²²»ÊÇì¶Üʽ: (1) ?x(F(x) ??y(G(y) ?H(x,y)))

(2) ?x?y(F(x) ?G(y) ?H(x,y)) (1) È¡¸öÌåÓòΪȫ×ܸöÌåÓò.

½âÊÍ I1: F(x): x ΪÓÐÀíÊý, G(y): y ΪÕûÊý, H(x,y): x

ÔÚ I1 ÏÂ: ?x(F(x) ??y(G(y) ?H(x,y)))ÎªÕæÃüÌâ, ËùÒԸù«Ê½²»ÊÇì¶Üʽ. ½âÊÍ I2: F(x),G(y)ͬ I1, H(x,y): y Õû³ý x.

ÔÚ I2 ÏÂ: ?x(F(x) ??y(G(y) ?H(x,y)))Ϊ¼ÙÃüÌâ, ËùÒԸù«Ê½²»ÊÇÓÀÕæÊ½. (2) Çë¶ÁÕ߸ø³ö²»Í¬½âÊÍ, ʹÆä·Ö±ðΪ³ÉÕæºÍ³É¼ÙµÄÃüÌâ¼´¿É.

4.15.(1) ¸ø³öÒ»¸ö·Ç±ÕʽµÄÓÀÕæÊ½.

(2) ¸ø³öÒ»¸ö·Ç±ÕʽµÄÓÀ¼Ùʽ.

(3) ¸ø³öÒ»¸ö·Ç±ÕʽµÄ¿ÉÂú×ãʽ, µ«²»ÊÇÓÀÕæÊ½.

(1) F(x) ???F(x). (2) F(x) ???F(x). (3) ?x(F(x, y) ??F(y, x)).