人教版高中数学选修2-2
√2所以√a2+b2+√b2+c2+√c2+a2≥(2a+2b+2c)
2=√2(a+b+c).(当且仅当a=b=c时取等号) 故√a2+b2+√b2+c2+√c2+a2≥√2(a+b+c).
12[解析](1)设等比数列{an}的公比为q,则a2=a1q,a5=a1q4, a1q=6
依题意,得方程组{4,
a1q=162解得a1=2,q=3, 所以an=2·3n-1 (2)因为Sn=所以≤
S2n+1
2(1?3n)1?3
=3n-1,
≤1.
Sn·Sn+232n+2?(3n+3n+2)+1
=32n+2?2·3n+1+1
32n+2?2√3n·3n+2+132n+2?2·3n+1+1
=1,即
Sn·Sn+2S2n+1
13.【证明】由题意知b=a+c, 所以b(a+c)=2ac. 因为cosB=
a2+c2?b22ac?b2
2ac
211
≥
2ac
=1-
b2
2ac
=1-
b2
b(a+c)
=1-
b
a+c
又△ABC三边长a,b,c满足a+c>b, 所以a+c<1, 所以1-ba+cb
>0.
所以cosB>0, 即B<90°.
5