Ö¸Êýº¯ÊýºÍ¶ÔÊýº¯ÊýÁ·Ï°Ì⼯ ÏÂÔØ±¾ÎÄ

¾Þ´óµÄËðʧ£®ÀïÊϵØÕðµÄµÈ¼¶×îÔçÊÇÔÚ1935ÄêÓÉÃÀ¹ú¼ÓÖÝÀí¹¤Ñ§ÔºµÄµØÕðѧ¼ÒÀïÌØÅÐ2

¶¨µÄ£®ËüÓëÕðÔ´ÖÐÐÄÊͷŵÄÄÜÁ¿(ÈÈÄܺͶ¯ÄÜ)´óСÓйأ®Õð¼¶M£½lg E£­3.2£¬ÆäÖÐE(½¹

3¶ú)ΪÒÔµØÕ𲨵ÄÐÎʽÊͷųöµÄÄÜÁ¿£®Èç¹ûÀïÊÏ6.0¼¶µØÕðÊͷŵÄÄÜÁ¿Ï൱ÓÚ1¿ÅÃÀ¹úÔÚ¶þսʱͶ·ÅÔڹ㵺µÄÔ­×Óµ¯µÄÄÜÁ¿£¬ÄÇôãë´¨´óµØÕðËùÊͷŵÄÄÜÁ¿Ï൱ÓÚ________¿Å¹ãµºÔ­×Óµ¯£®

Èý¡¢½â´ðÌâ

15

10£®(1)¼ÆË㣺lg£­lg£«lg 12.5£­log89¡¤log34£»

28(2)ÒÑÖª

11£®Èôa¡¢bÊÇ·½³Ì2(lg x)2£­lg x4£«1£½0µÄÁ½¸öʵ¸ù£¬Çólg(ab)¡¤(logab£«logba)µÄÖµ£®

3a£½4b£½36£¬Çó2

ab£«µÄÖµ£®

1

ÄÜÁ¦ÌáÉý

12£®ÏÂÁиø³öÁËxÓë10xµÄÆß×é½üËÆ¶ÔÓ¦Öµ£º ×éºÅ Ò» 0.301 03 2 ¶þ 0.477 11 3 Èý 0.698 97 5 ËÄ 0.778 15 6 Îå 0.903 09 8 Áù 1.000 00 10 Æß 1.079 18 12 x 10x ¼ÙÉèÔÚÉϱíµÄ¸÷×é¶ÔÓ¦ÖµÖУ¬ÓÐÇÒ½öÓÐÒ»×éÊÇ´íÎóµÄ£¬ËüÊǵÚ________×飮( ) A£®¶þ B£®ËÄ C£®Îå D£®Æß

13£®Ò»ÖÖ·ÅÉäÐÔÎïÖʲ»¶Ï±ä»¯ÎªÆäËûÎïÖÊ£¬Ã¿¾­¹ýÒ»ÄêµÄÊ£ÓàÖÊÁ¿Ô¼ÊÇÔ­À´µÄ75%£¬1

¹À¼ÆÔ¼¾­¹ý¶àÉÙÄ꣬¸ÃÎïÖʵÄÊ£ÓàÁ¿ÊÇÔ­À´µÄ£¿(½á¹û±£Áô1λÓÐЧÊý×Ö)(lg 2¡Ö0.301

30£¬lg 3¡Ö0.477 1)

¡ì5 ¶ÔÊýº¯Êý(Ò»)

1£®¶ÔÊýº¯ÊýµÄ¶¨Ò壺һ°ãµØ£¬ÎÒÃǰÑ______________________________½Ð×ö¶ÔÊýº¯Êý£¬ÆäÖÐxÊÇ×Ô±äÁ¿£¬º¯ÊýµÄ¶¨ÒåÓòÊÇ________£®________Ϊ³£ÓöÔÊýº¯Êý£»y£½________Ϊ×ÔÈ»¶ÔÊýº¯Êý. 2£®¶ÔÊýº¯ÊýµÄͼÏñÓëÐÔÖÊ

¶¨Òå µ×Êý

y£½logax (a>0£¬ÇÒa¡Ù1) a>1 0

ͼÏñ ¶¨ÒåÓò ÖµÓò ¹²µãÐÔ º¯ÊýÖµ ÌØµã ______ ______ ͼÏñ¹ýµã______£¬¼´loga1£½0 µ¥µ÷ÐÔ ÔÚ(0£¬£«¡Þ)ÉÏÊÇÔöº¯Êý ÔÚ(0£¬£«¡Þ)ÉÏÊǼõº¯Êý x¡Ê(0,1)ʱ£¬ y¡Ê______£» x¡Ê[1£¬£«¡Þ)ʱ£¬ y¡Ê______. ax¡Ê(0,1)ʱ£¬ y¡Ê______£» x¡Ê[1£¬£«¡Þ)ʱ£¬ y¡Ê______. ¶Ô³ÆÐÔ º¯Êýy£½logaxÓëy£½log1xµÄͼÏñ¹ØÓÚ______¶Ô³Æ 3.·´º¯Êý

¶ÔÊýº¯Êýy£½logax(a>0ÇÒa¡Ù1)ºÍÖ¸Êýº¯Êý____________________»¥Îª·´º¯Êý£® Ò»¡¢Ñ¡ÔñÌâ 1£®º¯Êýy£½log2x£­2µÄ¶¨ÒåÓòÊÇ( )

A£®(3£¬£«¡Þ) B£®[3£¬£«¡Þ) C£®(4£¬£«¡Þ) D£®[4£¬£«¡Þ) 1

2£®É輯ºÏM£½{y|y£½()x£¬x¡Ê[0£¬£«¡Þ)}£¬N£½{y|y£½log2x£¬x¡Ê(0,1]}£¬Ôò¼¯ºÏM¡ÈNÊÇ( )

2A£®(£­¡Þ£¬0)¡È[1£¬£«¡Þ) B£®[0£¬£«¡Þ) C£®(£­¡Þ£¬1] D£®(£­¡Þ£¬0)¡È(0,1) 3£®ÒÑÖªº¯Êýf(x)£½log2(x£«1)£¬Èôf(¦Á)£½1£¬Ôò¦ÁµÈÓÚ( )

A£®0 B£®1 C£®2 D£®3 4£®º¯Êýf(x)£½|log3x|µÄͼÏñÊÇ( )

5£®ÒÑÖª¶ÔÊýº¯Êýf(x)£½logax(a>0£¬a¡Ù1)£¬ÇÒ¹ýµã(9,2)£¬f(x)µÄ·´º¯Êý¼ÇΪy£½g(x)£¬Ôò

g(x)µÄ½âÎöʽÊÇ( )

A£®g(x)£½4x B£®g(x)£½2x C£®g(x)£½9x D£®g(x)£½3x

6£®Èôloga<1£¬ÔòaµÄȡֵ·¶Î§ÊÇ( )

3

2222

A£®(0£¬) B£®(£¬£«¡Þ) C£®(£¬1) D£®(0£¬)¡È(1£¬£«¡Þ)

3333¶þ¡¢Ìî¿ÕÌâ

7£®Èç¹ûº¯Êýf(x)£½(3£­a)x£¬g(x)£½logaxµÄÔö¼õÐÔÏàͬ£¬ÔòaµÄȡֵ·¶Î§ÊÇ________£® 8£®ÒÑÖªº¯Êýy£½loga(x£­3)£­1µÄͼÏñºã¹ý¶¨µãP£¬ÔòµãPµÄ×ø±êÊÇ________£®

2

9£®¸ø³öº¯ÊýÈý¡¢½â´ðÌâ

10£®ÇóÏÂÁк¯ÊýµÄ¶¨ÒåÓòÓëÖµÓò£º (1)y£½log2(x£­2)£»(2)y£½log4(x2£«8)£®

£¬Ôòf(log23)£½________.

11£®ÒÑÖªº¯Êýf(x)£½loga(1£«x)£¬g(x)£½loga(1£­x)£¬(a>0£¬ÇÒa¡Ù1)£® (1)Éèa£½2£¬º¯Êýf(x)µÄ¶¨ÒåÓòΪ[3,63]£¬Çóº¯Êýf(x)µÄ×îÖµ£® (2)Çóʹf(x)£­g(x)>0µÄxµÄȡֵ·¶Î§£®

ÄÜÁ¦ÌáÉý

12£®ÒÑ֪ͼÖÐÇúÏßC1£¬C2£¬C3£¬C4·Ö±ðÊǺ¯Êýy£½loga1x£¬y£½loga2x£¬y£½loga3x£¬y£½loga4xµÄͼÏñ£¬Ôòa1£¬a2£¬a3£¬a4µÄ´óС¹ØÏµÊÇ( )

A£®a4

1

ÔÚ(0£¬)ÄÚºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

2

x2£­logmx<0