×Ô¶¯¿ØÖÆÔ­Àí¿ÎºóϰÌâ´ð°¸£¨Íõ½¨»Ô¡¢¹ËÊ÷Éú±à£©Ç廪´óѧ³ö°æÉç - ͼÎÄ ÏÂÔØ±¾ÎÄ

Á÷ÈëÒºÌåQ£¬T11 Á÷ÈëÒºÌåQ2£¬T2 ÒºÌåV£¬T0 ÕôÆûTi ͼ P2-11

2-24 ÒÑ֪һϵÁÐÓÉÈçÏ·½³Ì×é³É£¬ÊÔ»æÖÆÏµÍ³·½¿òͼ£¬²¢Çó³ö±Õ»·´«µÝº¯Êý¡£

X1(s)?Xr(s)W1(s)?W1(s)[W7(s)?W8(s)]Xc(s)X2(s)?W2(s)[X1(s)?W6(s)X3(s)]X3(s)?[X2(s)?Xc(s)W5(s)]W3(s)Xc(s)?W4(s)X3(s)½â£ºÓÉÒÔÉÏËĸö·½³Ìʽ£¬¿ÉÒԵõ½ÒÔÏÂËĸö×ӽṹͼ 1£®

X1(s)=Xr(s)W1(s)- W1(s)[ W7(s)- W8(s)]Xc(s)

Xr(s) - W7(s)-W8(s) W1(s) X1(s) Xc(s)

2.

X2(s)= W2(s)[ X1(s)- W6(s)X3(s)]

X(s) 1- W6(s) W2(s) X2(s) X3(s)

3.

X3(s)=[ X2(s)- Xc(s)W5(s)] W3(s)

X(s) 2- W5(s) W3(s) X3(s) Xc(s)

4.

Xc(s)=W4(s)X3(s)

X3(s) W4(s) Xc(s)

½«ÒÔÉÏËĸö×Ó¿òͼ°´ÏàͬµÄÐźÅÏßÒÀ´ÎÏàÁ¬£¬¿ÉÒԵõ½Õû¸öϵͳµÄ¿òͼÈçÏ£º X3(s) W6(s) Xr(s) - W7(s)-W8(s) Xc(s) X1(s) - W2(s) X2(s) - W5(s) Xc(s) Xc(s) W1(s) W3(s) X(s) W4(s) 3

ÀûÓÃ÷ѷ¹«Ê½¿ÉÒÔÇó³ö±Õ»·´«µÝº¯ÊýΪ£º L11=£­W1(s) W2(s) W3(s) W4(s)[ W7(s)- W8(s)] L12=£­W3(s) W4(s) W5(s) L13=£­W2(s) W3(s) W6(s) L2=0

T1= W1(s)W2(s) W3(s) W4(s)

¡÷ 1=1 ¡÷ =1+ W1(s) W2(s) W3(s) W4(s)[ W7(s)- W8(s)]+ W3(s) W4(s) W5(s)+ W2(s) W3(s) W6(s)

WB(s)??

Xc(s)T1?1?Xr(s)?W1W2W3W41?W1W2W3W4?W7?W8??W3W4W5?W2W3W6

2-25 ÊԷֱ𻯼òͼP2-12ºÍͼP2-13Ëùʾ½á¹¹Í¼£¬²¢Çó³öÏàÓ¦µÄ´«µÝº¯Êý¡£

Xr W1 W2 Xc H1 ͼ P2-12 H2

Xr W1 H2 Xc W2 W3 H2 H1 ͼ P2-13 ½â£º»¯¼òͼP2-12ÈçÏ£º

Xr W1 W2 Xc H1 H2 1/W2 ͼ P2-12

¼ÌÐø»¯¼òÈçÏ£º

Xr W1 W2 Xc H1+H2-1/W2 ͼ P2-12

ËùÒÔ£º

XcW1W2W1W2??

????Xr1?W1W2H1?H2?1/W21?W1W2H1?W2H2?1½â£º»¯¼òͼP2-12ÈçÏ£º

Xr 1/W1 W1 H2 W2 1/W3 Xc W3 H1 ͼ P2-13 Xr H2 1/W1 W1 1+ W1H1 ͼ P2-13 H2 W2 1/W3 W3 1+ W3H2 Xc ½øÒ»²½»¯¼òÈçÏ£º ËùÒÔ£º

W1W2W3?1?W1H1??1?W3H2?XcW1W2W3??W1W2W3H2?1?W1H1??1?W3H2??W2H2Xr1?

?1?W1H1??1?W3H2?W1W3?W1W2W31?W1H1?W2H2?W3H2?W1H1W3H2Xc(s)Xc(s)£¬W2(s)?¡£ Xr(s)Xd(s)2-26 ÇóÈçͼP2-14ËùʾϵͳµÄ´«µÝº¯ÊýW1(s)?

H1 Xr W1 Xd H2 Xc W2 H3 ͼ P2-14