ÈÎÎñ A B C D E F G H I J K 9 ʱ¼ä 45 11 9 50 15 12 12 12 12 8
MODEL:
(F) !×°ÅäÏ߯½ºâÄ£ÐÍ;
(A) (B) (C) SETS:
(G) !ÈÎÎñ¼¯ºÏ£¬ÓÐÒ»¸öÍê³Éʱ¼äÊôÐÔT;
(J) TASK/ A B C D E F G H I J K/: T;
(H) !ÈÎÎñÖ®¼äµÄÓÅÏȹØÏµ¼¯ºÏ£¨A ±ØÐë
(D) (E) Íê³É²ÅÄÜ¿ªÊ¼B£¬µÈµÈ£©;
(I) PRED( TASK, TASK)/ A,B B,C C,F
C,G F,J G,J
J,K D,E E,H E,I H,J I,J /; ! ¹¤×÷Õ¾¼¯ºÏ; STATION/1..4/;
TXS( TASK, STATION): X;
! XÊÇÅÉÉú¼¯ºÏTXSµÄÒ»¸öÊôÐÔ¡£Èç¹ûX£¨I£¬K£©£½1£¬Ôò±íʾµÚI¸öÈÎÎñ Ö¸ÅɸøµÚK¸ö¹¤×÷Õ¾Íê³É; ENDSETS DATA:
!ÈÎÎñA B C D E F G H I J KµÄÍê³Éʱ¼ä¹À¼ÆÈçÏÂ; T = 45 11 9 50 15 12 12 12 12 8 9; ENDDATA
! µ±ÈÎÎñ³¬¹ý15¸öʱ£¬Ä£Ð͵ÄÇó½â½«±äµÃºÜÂý;
!ÿһ¸ö×÷Òµ±ØÐëÖ¸Åɵ½Ò»¸ö¹¤×÷Õ¾£¬¼´Âú×ãÔ¼Êø¢Ù;
@FOR( TASK( I): @SUM( STATION( K): X( I, K)) = 1);
!¶ÔÓÚÿһ¸ö´æÔÚÓÅÏȹØÏµµÄ×÷Òµ¶ÔÀ´Ëµ£¬Ç°Õß¶ÔÓ¦µÄ¹¤×÷Õ¾I±ØÐëСÓÚºó Õß¶ÔÓ¦µÄ¹¤×÷Õ¾J£¬¼´Âú×ãÔ¼Êø¢Ú;
@FOR( PRED( I, J): @SUM( STATION( K): K * X( J, K) - K * X( I, K)) >= 0); !¶ÔÓÚÿһ¸ö¹¤×÷Õ¾À´Ëµ£¬Æä»¨·Ñʱ¼ä±ØÐë²»´óÓÚ×°ÅäÏßÖÜÆÚ; @FOR( STATION( K):
@SUM( TXS( I, K): T( I) * X( I, K)) <= CYCTIME); !Ä¿±êº¯ÊýÊÇ×îС»¯×ªÅäÏßÖÜÆÚ; MIN = CYCTIME;
!Ö¸¶¨X(I,J) Ϊ0/1±äÁ¿; @FOR( TXS: @BIN( X)); END
¼ÆËãµÄ²¿·Ö½á¹ûΪ
Global optimal solution found at iteration: 1255 Objective value: 50.00000
Variable Value Reduced Cost CYCTIME 50.00000 0.000000 X( A, 1) 1.000000 0.000000 X( A, 2) 0.000000 0.000000 X( A, 3) 0.000000 45.00000 X( A, 4) 0.000000 0.000000 X( B, 1) 0.000000 0.000000 X( B, 2) 0.000000 0.000000
(K)
Ò³ µÚ37
X( B, 3) 1.000000 11.00000 X( B, 4) 0.000000 0.000000 X( C, 1) 0.000000 0.000000 X( C, 2) 0.000000 0.000000 X( C, 3) 0.000000 9.000000 X( C, 4) 1.000000 0.000000 X( D, 1) 0.000000 0.000000 X( D, 2) 1.000000 0.000000 X( D, 3) 0.000000 50.00000 X( D, 4) 0.000000 0.000000 X( E, 1) 0.000000 0.000000 X( E, 2) 0.000000 0.000000 X( E, 3) 1.000000 15.00000 X( E, 4) 0.000000 0.000000 X( F, 1) 0.000000 0.000000 X( F, 2) 0.000000 0.000000 X( F, 3) 0.000000 12.00000 X( F, 4) 1.000000 0.000000 X( G, 1) 0.000000 0.000000 X( G, 2) 0.000000 0.000000 X( G, 3) 0.000000 12.00000 X( G, 4) 1.000000 0.000000 X( H, 1) 0.000000 0.000000 X( H, 2) 0.000000 0.000000 X( H, 3) 1.000000 12.00000 X( H, 4) 0.000000 0.000000 X( I, 1) 0.000000 0.000000 X( I, 2) 0.000000 0.000000 X( I, 3) 1.000000 12.00000 X( I, 4) 0.000000 0.000000 X( J, 1) 0.000000 0.000000 X( J, 2) 0.000000 0.000000 X( J, 3) 0.000000 8.000000 X( J, 4) 1.000000 0.000000 X( K, 1) 0.000000 0.000000 X( K, 2) 0.000000 0.000000 X( K, 3) 0.000000 9.000000 X( K, 4) 1.000000 0.000000
Àý7.3 ÂÃÐÐÊÛ»õÔ±ÎÊÌ⣨ÓֳƻõÀɵ£ÎÊÌ⣬Traveling Salesman Problem£©
ÓÐÒ»¸öÍÆÏúÔ±£¬´Ó³ÇÊÐ1³ö·¢£¬Òª±é·Ã³ÇÊÐ2£¬3£¬?£¬n¸÷Ò»´Î£¬×îºó·µ»Ø³ÇÊÐ1¡£ÒÑÖª´Ó³ÇÊÐiµ½jµÄÂ÷ÑΪij£¬ÎÊËûÓ¦°´ÔõÑùµÄ´ÎÐò·ÃÎÊÕâЩ³ÇÊУ¬Ê¹µÃ×ÜÂ÷Ñ×îÉÙ£¿
¿ÉÒÔÓöàÖÖ·½·¨°ÑTSP±íʾ³ÉÕûÊý¹æ»®Ä£ÐÍ¡£ÕâÀï½éÉܵÄÒ»ÖÖ½¨Á¢Ä£Ð͵ķ½·¨£¬ÊǰѸÃÎÊÌâµÄÿ¸ö½â£¨²»Ò»¶¨ÊÇ×îÓŵģ©¿´×÷ÊÇÒ»´Î¡°Ñ²»Ø¡±¡£
ÔÚÏÂÊöÒâÒåÏ£¬ÒýÈëһЩ0-1ÕûÊý±äÁ¿£º
ncxij?1£¬Ñ²»ØÂ·ÏßÊÇ´Ó???0£¬ÆäËüÇé¿öiµ½j,ÇÒi?jÆäÄ¿±êÖ»ÊÇʹi,j?1Ϊ×îС¡£
ÕâÀïÓÐÁ½¸öÃ÷ÏԵıØÐëÂú×ãµÄÌõ¼þ£º
·ÃÎʳÇÊÐiºó±ØÐëÒªÓÐÒ»¸ö¼´½«·ÃÎʵÄÈ·ÇгÇÊУ»·ÃÎʳÇÊÐjǰ±ØÐëÒªÓÐÒ»¸ö¸Õ¸Õ·ÃÎʹýµÄÈ·ÇгÇÊС£ÓÃÏÂÃæµÄÁ½×éÔ¼Êø·Ö±ðʵÏÖÉÏÃæµÄÁ½¸öÌõ¼þ¡£
n?cijxij
?xj?1ij?1,i?1,2,?,n
Ò³ µÚ38
n
µ½´ËÎÒÃǵõ½ÁËÒ»¸öÄ£ÐÍ£¬ËüÊÇÒ»¸öÖ¸ÅÉÎÊÌâµÄÕûÊý¹æ»®Ä£ÐÍ¡£µ«ÒÔÉÏÁ½¸öÌõ¼þ¶ÔÓÚTSPÀ´Ëµ²¢²»³ä·Ö£¬½ö½öÊDZØÒªÌõ¼þ¡£ÀýÈ磺
ÒÔÉÏÁ½¸öÌõ¼þ¶¼Âú×㣬µ«ËüÏÔÈ»²»ÊÇTSPµÄ½â£¬Ëü´æÔÚ
6 3 Á½¸ö×ÓѲ»Ø¡£
ÕâÀÎÒÃǽ«ÐðÊöÒ»ÖÖÔÚÔÄ£ÐÍÉϸ½¼Ó³ä·ÖµÄÔ¼ÊøÌõ¼þÒÔ±ÜÃâ²úÉú×ÓѲ»ØµÄ·½·¨¡£°Ñ¶îÍâ±äÁ¿4 1 ui(i?2,3,?,n)¸½¼Óµ½ÎÊÌâÖС£¿É°ÑÕâЩ±äÁ¿¿´×÷ÊÇÁ¬2
ÐøµÄ£¨×îÈ»ÕâЩ±äÁ¿ÔÚ×îÓŽâÖÐÈ¡ÆÕͨµÄÕûÊýÖµ£©¡£ÏÖ5 ÔÚ¸½¼ÓÏÂÃæÐÎʽµÄÔ¼ÊøÌõ¼þ
i?1?xij?1,j?1,2,?,n¡£
ΪÁËÖ¤Ã÷¸ÃÔ¼ÊøÌõ¼þÓÐÔ¤ÆÚµÄЧ¹û£¬±ØÐëÖ¤Ã÷£º£¨1£©Èκκ¬×ÓѲ»ØµÄ·Ïß¶¼²»Âú×ã¸ÃÔ¼ÊøÌõ¼þ£»£¨2£©È«²¿Ñ²»Ø¶¼Âú×ã¸ÃÔ¼ÊøÌõ¼þ¡£
Ê×ÏÈÖ¤Ã÷£¨1£©£¬Ó÷´Ö¤·¨¡£¼ÙÉ軹´æÔÚ×ÓѲ»Ø£¬Ò²¾ÍÊÇ˵ÖÁÉÙÓÐÁ½¸ö×ÓѲ»Ø¡£ÄÇôÖÁÉÙ´æÔÚÒ»¸ö×ÓѲ»ØÖв»º¬³ÇÊÐ1¡£°Ñ¸Ã×ÓѲ»Ø¼ÇΪi1i2?iki1£¬Ôò±ØÓÐ
ui1?ui2?n?n?1ui21?ui3?n?n?1?uik?ui1?n?n?1ui?uj?nxij?n?1,2?i?j?n°ÑÕâk¸öʽ×ÓÏà¼Ó£¬ÓÐ
n?n?1£¬Ã¬¶Ü£¡
¹Ê¼ÙÉè²»ÕýÈ·£¬½áÂÛ£¨1£©µÃÖ¤¡£
ÏÂÃæÖ¤Ã÷£¨2£©£¬²ÉÓù¹Ôì·¨¡£¶ÔÓÚÈÎÒâµÄ×ÜѲ»Ø1i1?in?11£¬¿ÉÈ¡
ui?·ÃÎʳÇÊÐiµÄ˳ÐòÊý£¬È¡Öµ·¶Î§Îª{0,1,?,n?2}¡£
u?uj?n?2,2?i?j?nÒò´Ë£¬i¡£ÏÂÃæÀ´Ö¤Ã÷×ÜѲ»ØÂú×ã¸ÃÔ¼ÊøÌõ¼þ¡£ (¢¡)×ÜѲ»ØÉϵıß
?ui1?ui2?n?n?1?n?1??ui2?ui3?n?n?1?n?1????u?in?2?uin?1?n?n?1?n?1
£¨¢¢£©·Ç×ÜѲ»ØÉϵıß
??uir?uj?n?2?n?1,r?1,2,?,n?2,j?{2,3,?,n}?{ir,ir?1}?j?{2,3,?,n}?{ir}??uin?1?uj?n?2?n?1,
´Ó¶ø½áÂÛ£¨2£©µÃÖ¤¡£
ÕâÑùÎÒÃǰÑTSPת»¯³ÉÁËÒ»¸ö»ìºÏÕûÊýÏßÐԹ滮ÎÊÌâ¡£
Ò³ µÚ39
ÏÔÈ»£¬µ±³ÇÊиöÊý½Ï´ó£¨´óÓÚ30£©Ê±£¬¸Ã»ìºÏÕûÊýÏßÐԹ滮ÎÊÌâµÄ¹æÄ£»áºÜ´ó£¬´Ó¶ø¸øÇó½â´øÀ´ºÜ´óÎÊÌâ¡£TSPÒѱ»Ö¤Ã÷ÊÇNPÄÑÎÊÌ⣬Ŀǰ»¹Ã»Óз¢ÏÖ¶àÏîʽʱ¼äµÄËã·¨¡£¶ÔÓÚС¹æÄ£ÎÊÌ⣬ÎÒÃÇÇó½âÕâ¸ö»ìºÏÕûÊýÏßÐԹ滮ÎÊÌâµÄ·½Ê½»¹ÊÇÓÐЧµÄ¡£
TSPÊÇÒ»¸öÖØÒªµÄ×éºÏÓÅ»¯ÎÊÌ⣬³ýÁËÓÐÖ±¹ÛµÄÓ¦ÓÃÍ⣬Ðí¶àÆäËü¿´ËÆÎÞÁªÏµµÄÓÅ»¯ÎÊÌâÒ²¿Éת»¯ÎªTSP¡£ÀýÈ磺
ÎÊÌâ1 ÏÖÐèÔÚһ̨»úÆ÷Éϼӹ¤n¸öÁã¼þ£¨ÈçÉÕ´ÉÆ÷£©£¬ÕâЩÁã¼þ¿É°´ÈÎÒâÏȺó˳ÐòÔÚ»úÆ÷Éϼӹ¤¡£ÎÒÃÇÏ£Íû¼Ó¹¤Íê³ÉËùÓÐÁã¼þµÄ×Üʱ¼ä¾¡¿ÉÄÜÉÙ¡£ÓÉÓÚ¼Ó¹¤¹¤ÒÕµÄÒªÇ󣬼ӹ¤Áã¼þjʱ»úÆ÷±ØÐë´¦ÓÚÏàӦ״̬j£¨Èç¯Î£©¡£ÉèÆðʼδ¼Ó¹¤ÈκÎÁã¼þʱ»úÆ÷´¦ÓÚ״̬s0£¬ÇÒµ±ËùÓÐÁã¼þ¼Ó¹¤Íê³ÉºóÐè»Ö¸´µ½s0״̬¡£ÒÑÖª´Ó״̬siµ÷Õûµ½×´Ì¬jÐèҪʱ¼äij¡£Áã¼þj±¾Éí
p¼Ó¹¤Ê±¼äΪj¡£Îª·½±ãÆð¼û£¬ÒýÈëÒ»¸öÐéÁã¼þ0£¬Æä¼Ó¹¤Ê±¼äΪ0£¬ÒªÇó״̬Ϊs0£¬Ôò{0£¬1£¬2£¬?£¬n}µÄÒ»¸öȦÖû»¦Ð¾Í±íʾ¶ÔËùÓÐÁã¼þµÄÒ»¸ö¼Ó¹¤Ë³Ðò£¬ÔÚ´ËÖû»Ï£¬Íê³ÉËùÓмӹ¤ËùÐèÒªµÄ×Üʱ¼äΪ nnns(j?i)cs??min????s.t.?????????nz?i,j?1i?jn?cijxij?xi?1nij?1,?1,j?1,2,?,ni?1,2,?,n2?i?j?n?xj?1ijui?uj?nxij?n?1,xij?0,1,ui?0,i,j?1,2,?,ni?2,3,?,n?(c?i?0ni(i)?p?(i))??c?i?0i(i)??j?0pj.
ÓÉÓÚ
?j?0pjÊÇÒ»¸ö³£Êý£¬¹Ê¸ÃÁã¼þµÄ¼Ó¹¤Ë³ÐòÎÊÌâ±ä³ÉTSP¡£
!ÂÃÐÐÊÛ»õÔ±ÎÊÌâ; model: sets:
city / 1.. 5/: u; link( city, city): dist, ! ¾àÀë¾ØÕó; x; endsets
n = @size( city);
data: !¾àÀë¾ØÕó£¬Ëü²¢²»ÐèÒªÊǶԳƵÄ;
dist = @qrand(1); !Ëæ»ú²úÉú£¬ÕâÀï¿É¸ÄΪÄãÒª½â¾öµÄÎÊÌâµÄÊý¾Ý; enddata
!Ä¿±êº¯Êý;
min = @sum( link: dist * x); @FOR( city( K): !½øÈë³ÇÊÐK;
@sum( city( I)| I #ne# K: x( I, K)) = 1; !À뿪³ÇÊÐK;
@sum( city( J)| J #ne# K: x( K, J)) = 1; );
Ò³ µÚ40