πtan2α1
,π?. 7.已知=,α∈??2?1+2tan α3(1)求tan α的值; (2)求
sin α+2cos α
的值.
5cos α-sin α
tan2α
1
解:(1)由=,得3tan2α-2tan α-1=0,
1+2tan α3即(3tan α+1)(tan α-1)=0, 1
解得tan α=-或tan α=1.
3
π1,π?,所以tan α<0,所以tan α=-. 因为α∈??2?3
1
-+2sin α+2cos αtan α+2315
(2)由(1),得tan α=-,所以===.
35cos α-sin α5-tan α5-?-1?16
?3?
2?cos α-sin α?cos αsin α
8.求证:-=. 1+sin α1+cos α1+sin α+cos αcos α?1+cos α?-sin α?1+sin α?
证明:左边= ?1+sin α??1+cos α?cos2α-sin2α+cos α-sin α
=
1+sin α+cos α+sin αcos α
112
?cos α+sin α?+sin α+cos α+22?cos α-sin α??cos α+sin α+1?
=
2?cos α-sin α??cos α+sin α+1?= ?sin α+cos α+1?2
2?cos α-sin α?
=
=右边.
1+sin α+cos α
所以原等式成立.
课时跟踪检测(六) 诱导公式(一)
层级一 学业水平达标
1.sin 600°的值是( ) 1
A.
2C.
3 2
1B.-
2D.-
3 2
解析:选D sin 600°=sin(360°+240°)=sin 240° =sin(180°+60°)=-sin 60°=-
3. 2
1
2.若sin(π+α)=-,则sin(4π-α)的值是( )
21
A.
2C.-
3 2
1B.-
2D.
3 2
11
解析:选B 由题知,sin α=,所以sin(4π-α)=-sin α=-.
223.如图所示,角θ的终边与单位圆交于点P-A.-C.
25
5
B.-D.5, 5
5 5
??525?,则cos(π-θ)的值为( ) ,55?5
525 5
解析:选C ∵r=1,∴cos θ=-∴cos(π-θ)=-cos θ=
5. 5
π2π1
-α?=,则tan?+α?=( ) 4.已知tan??3?3?3?1
A.
323C.
3
1B.-
323D.- 3
2ππ
+α?=tan?π-?-α?? 解析:选B ∵tan??3???3??π?=-tan??3-α?, 2π1
+α?=-. ∴tan??3?3
5.设tan(5π+α)=m,则m+1A.
m-1C.-1
sin?α+3π?+cos?π+α?
的值等于( )
sin?-α?-cos?π+α?
B.
m-1
m+1
D.1
解析:选A ∵tan(5π+α)=tan[4π+(π+α)] =tan(π+α)=tan α,∴tan α=m,
sin?π+α?-cos α-sin α-cos αtan α+1
∴原式=== -sin α+cos α-sin α+cos αtan α-1m+1=,故选A. m-16.求值:(1)cos 解析:(1)cos
29π
=______;(2)tan(-855°)=______. 6
5π29π5π4π+?=cos =cos?6??66
ππ3
π-?=-cos =-. =cos??6?62
(2)tan(-855°)=-tan 855°=-tan(2×360°+135°)=-tan 135°=-tan(180°-45°)=tan 45°=1.
答案:(1)-
3
(2)1 2
π1
-,0?,则tan(2π-α)的值为________. 7.已知sin(π-α)=log8,且α∈??2?412
解析:sin(π-α)=sin α=log8=-,
43π
-,0?, 又α∈??2?所以cos α=答案:
25
5
1-sin2α=
sin α255
,tan(2π-α)=tan(-α)=-tan α=-=. 3cos α5
12
8.已知cos(508°-α)=,则cos(212°+α)=________.
13
12
解析:由于cos(508°-α)=cos(360°+148°-α)=cos(148°-α)=,
1312
所以cos(212°+α)=cos(360°+α-148°)=cos(α-148°)=cos(148°-α)=. 13
12
答案:
13
9.求下列各三角函数值:
8π23π37π-?;(2)cos(1)sin?;(3)tan. ?3?668π4π4π
-?=sin?-4π+?=sin 解:(1)sin?3??3??3ππ3π+?=-sin=-. =sin??3?32
ππ23ππ3
4π-?=cos?-?=cos=. (2)cos=cos?6???6?662π37ππ36π+?=tan=. (3)tan=tan?6??663210.若cos α=,α是第四象限角,
3求
sin?α-2π?+sin?-α-3π?cos?α-3π?
的值.
cos?π-α?-cos?-π-α?cos?α-4π?
25
解:由已知cos α=,α是第四象限角得sin α=-,
33sin?α-2π?+sin?-α-3π?cos?α-3π?
故 cos?π-α?-cos?-π-α?cos?α-4π?sin α-sin αcos α5==.
2-cos α+cos2α
层级二 应试能力达标
3
1.已知cos(π-α)=-,且α是第一象限角,则sin(-2π-α)的值是( )
54
A.
54C.±
5
4B.-
53D.
5
3
解析:选B ∵cos(π-α)=-cos α,∴cos α=. 5∵α是第一象限角,∴sin α>0, ∴sin α=1-cos2α=
3?241-??5?=5.
4∴sin(-2π-α)=sin(-α)=-sin α=-. 5
2.设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β∈R,若f(2 015)=5,则f(2 016)