计量经济学题库(超完整版)及答案 下载本文

21.残差:样本回归方程的拟合值与观测值的误差称为回归残差。(3分)

22.显著性检验:利用样本结果,来证实一个虚拟假设的真伪的一种检验程序。(3分)

23.回归变差:简称ESS,表示由回归直线(即解释变量)所解释的部分(2分),表示x对y的线性影响(1分)。 24.剩余变差:简称RSS,是未被回归直线解释的部分(2分),是由解释变量以外的因素造成的影响(1分)。

25.多重决定系数:在多元线性回归模型中,回归平方和与总离差平方和的比值(1分),也就是在被解释变量的总变差中能由解释变量所解释的那部分变差的比重,我们称之为多重决定系数,仍用R表示(2分)。

26.调整后的决定系数:又称修正后的决定系数,记为R,是为了克服多重决定系数会随着解释变量的增加而增大的缺陷提出来的,(2分) 其公式为:R22

2e??1??(y2tt/(n?k?1)?y)/(n?1)(1分)。

27.偏相关系数:在Y、X1、X2三个变量中,当X1 既定时(即不受X1的影响),表示Y与X2之间相关关系的指标,称为偏相关系数,记做RY2.1。(3分)

28.异方差性:在线性回归模型中,如果随机误差项的方差不是常数,即对不同的解释变量观测值彼此不同,则称随机项(3分)

29.戈德菲尔特-匡特检验:该方法由戈德菲尔特(S.M.Goldfeld)和匡特(R.E.Quandt)于1965年提出,用对样本进行分段比较的方法来判断异方差性。(3分)

30.怀特检验:该检验由怀特(White)在1980年提出,通过建立辅助回归模型的方式来判断异方差性。(3分)

31.戈里瑟检验和帕克检验:该检验法由戈里瑟和帕克于1969年提出,其基本原理都是通过建立残差序列对解释变量的(辅助)回归模型,判断随机误差项的方差与解释变量之间是否存在着较强的相关关系,进而判断是否存在异方差性。(3分) 32.序列相关性:对于模型

yi??0??1x1i??2x2i????kxki??i i?1,2,?,n

随机误差项互相独立的基本假设表现为Cov(?i,?j)?0 i?j,i,j?1,2,?,n(1分) 如果出现 Cov(?i,?j)?0 i?j,i,j?1,2,?,n

即对于不同的样本点,随机误差项之间不再是完全互相独立,而是存在某种相关性,则认为出现了序列相关性(Serial Correlation)。(2分)

33.虚假序列相关:是指模型的序列相关性是由于省略了显著的解释变量而导致的。

34.差分法:差分法是一类克服序列相关性的有效方法,被广泛的采用。差分法是将原模型变换为差分模型,分为一阶差分法和广义差分法。

35.广义差分法:广义差分法可以克服所有类型的序列相关带来的问题,一阶差分法是它的一个特例。 36.自回归模型:

ui具有异方差性。

yt??yt?1??t

37.广义最小二乘法:是最有普遍意义的最小二乘法,普通最小二乘法和加权最小二乘法是它的特例。 38. DW检验:德宾和瓦特森与1951年提出的一种适于小样本的检验方法。DW检验法有五个前提条件。

39.科克伦-奥克特迭代法:是通过逐次跌代去寻求更为满意的?的估计值,然后再采用广义差分法。具体来说,该方法是利用残差?t去估计未知的?。(

40. Durbin两步法:当自相关系数?未知,可采用Durbin提出的两步法去消除自相关。第一步对一多元回归模型,使用OLS法估计其参数,第二步再利用广义差分。

41.相关系数:度量变量之间相关程度的一个系数,一般用ρ表示。??Cov(?i?j)Var(?i)Var(?j) ,0???1 ,越接近于1,相关

程度越强,越接近于0,相关程度越弱。

42.多重共线性:是指解释变量之间存在完全或不完全的线性关系。

43.方差膨胀因子:是指解释变量之间存在多重共线性时的方差与不存在多重共线性时的方差之比。 44.把质的因素量化而构造的取值为0和1的人工变量。

45.在设定模时如果模型中解释变量的构成.模型函数的形式以及有关随机误差项的若干假定等内容的设定与客观实际不一致,利用计量经济学模型来描述经济现象而产生的误差。

46.是指与模型中的随机解释变量高度相关,与随机误差项不相关的变量。 47.用工具变量替代模型中与随机误差项相关的随机解释变量的方法。

48.由于引进虚拟变量,回归模型的截距或斜率随样本观测值的改变而系统地改变。

*??1????x?x49. 这是虚拟变量的一个应用,当解释变量x低于某个已知的临界水平x时,我们取虚拟变量D??设置而成的模型称之为

*??0???x?x*分段线性回归模型。

50. 分布滞后模型:如果滞后变量模型中没有滞后因变量,因变量受解释变量的影响分布在解释变量不同时期的滞后值上,则称这种模型为分布滞后模型。

51.有限分布滞后模型:滞后期长度有限的分布滞后模型称为有限分布滞后模型。 52.无限分布滞后模型:滞后期长度无限的分布滞后模型称为无限分布滞后模型。

53.几何分布滞后模型:对于无限分布滞后模型,如果其滞后变量的系数bi是按几何级数列衰减的,则称这种模型为几何分布滞后模型。 54.联立方程模型:是指由两个或更多相互联系的方程构建的模型。

55. 结构式模型:是根据经济理论建立的反映经济变量间直接关系结构的计量方程系统。 56. 简化式模型:是指联立方程中每个内生变量只是前定变量与随机误差项的函数。 57. 结构式参数:结构模型中的参数叫结构式参数 58. 简化式参数:简化式模型中的参数叫简化式参数。

59.识别:就是指是否能从简化式模型参数估计值中推导出结构式模型的参数估计值。 60.不可识别:是指无法从简化式模型参数估计值中推导出结构式模型的参数估计值。

61. 识别的阶条件:如果一个方程能被识别,那么这个方程不包含的变量的总数应大于或等于模型系统中方程个数减1。 62.识别的秩条件:一个方程可识别的充分必要条件是:所有不包含在这个方程中的参数矩阵的秩为m-1。

63.间接最小二乘法:先利用最小二乘法估计简化式方程,再通过参数关系体系,由简化式参数的估计值求解得结构式参数的估计值。 四、简答题(每小题5分)

1.简述计量经济学与经济学、统计学、数理统计学学科间的关系。

答:计量经济学是经济理论、统计学和数学的综合。(1分)经济学着重经济现象的定性研究,计量经济学着重于定量方面的研究。(1分)统计学是关于如何收集、整理和分析数据的科学,而计量经济学则利用经济统计所提供的数据来估计经济变量之间的数量关系并加以验证。(1分)数理统计学作为一门数学学科,可以应用于经济领域,也可以应用于其他领域;计量经济学则仅限于经济领域。(1分)计量经济模型建立的过程,是综合应用理论、统计和数学方法的过程,计量经济学是经济理论、统计学和数学三者的统一。 2、计量经济模型有哪些应用?

答:①结构分析。(1分)②经济预测。(1分)③政策评价。(1分)④检验和发展经济理论。(2分) 3、简述建立与应用计量经济模型的主要步骤。

答:①根据经济理论建立计量经济模型;(1分)②样本数据的收集;(1分)③估计参数;(1分)④模型的检验;(1分)⑤计量经济模型的应用。(1分)

4、对计量经济模型的检验应从几个方面入手?

答:①经济意义检验;(2分)②统计准则检验;(1分)③计量经济学准则检验;(1分)④模型预测检验。(1分) 5.计量经济学应用的数据是怎样进行分类的?

答:四种分类:①时间序列数据;(1分)②横截面数据;(1分)③混合数据;(1分)④虚拟变量数据。(2分) 6.在计量经济模型中,为什么会存在随机误差项?

答:随机误差项是计量经济模型中不可缺少的一部分。(1分)产生随机误差项的原因有以下几个方面:①模型中被忽略掉的影响因素造成的误差;(1分)②模型关系认定不准确造成的误差;(1分)③变量的测量误差;(1分)④随机因素。(1分) 7.古典线性回归模型的基本假定是什么?

答:①零均值假定。(1分)即在给定xt的条件下,随机误差项的数学期望(均值)为0,即E(ut)=0。②同方差假定。(1分)误差项ut的方差与t无关,为一个常数。③无自相关假定。(1分)即不同的误差项相互独立。④解释变量与随机误差项不相关假定。(1分)⑤正态性假定,(1分)即假定误差项

ut服从均值为0,方差为?的正态分布。

28.总体回归模型与样本回归模型的区别与联系。

答:主要区别:①描述的对象不同。(1分)总体回归模型描述总体中变量y与x的相互关系,而样本回归模型描述所观测的样本中变量y与x的相互关系。②建立模型的不同。(1分)总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。③模型性质不同。(1分)总体回归模型不是随机模型,样本回归模型是随机模型,它随着样本的改变而改变。

主要联系:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。(2分) 9.试述回归分析与相关分析的联系和区别。

答:两者的联系:①相关分析是回归分析的前提和基础;回归分析是相关分析的深入和继续。(1分)②相关分析与回归分析的有关指标之间存在计算上的内在联系。(1分)

两者的区别:①回归分析强调因果关系,相关分析不关心因果关系,所研究的两个变量是对等的。(1分)②对两个变量x与y而言,相关分析中:

rxy?ryx;在回归分析中,

??b??x?t?by01t和

?t?a?0?a?1?ytx却是两个完全不同的回归方程。(1分)③回归分析对资料的

要求是被解释变量y是随机变量,解释变量x是非随机变量;相关分析对资料的要求是两个变量都随机变量。(1分) 10.在满足古典假定条件下,一元线性回归模型的普通最小二乘估计量有哪些统计性质? 答:①线性,是指参数估计量

?b0和

?b1分别为观测值和

yt和随机误差项

ut的线性函数或线性组合。(1分)②无偏性,指参数估计量

?b0和

?b1的均值(期望值)分别等于总体参数

b0b1。(2分)③有效性(最小方差性或最优性),指在所有的线性无偏估计量中,最小二乘估计量

?b0和

?b1的方差最小。(2分)

11.简述BLUE的含义。

答:BLUE即最佳线性无偏估计量,是best linear unbiased estimators的缩写。(2分)在古典假定条件下,最小二乘估计量具备线性、无偏性和有效性,是最佳线性无偏估计量,即BLUE,这一结论就是著名的高斯-马尔可夫定理。(3分)

12.对于多元线性回归模型,为什么在进行了总体显著性F检验之后,还要对每个回归系数进行是否为0的t检验?

答:多元线性回归模型的总体显著性F检验是检验模型中全部解释变量对被解释变量的共同影响是否显著。(1分)通过了此F检验,就可以说模型中的全部解释变量对被解释变量的共同影响是显著的,但却不能就此判定模型中的每一个解释变量对被解释变量的影响都是显著的。(3分)因此还需要就每个解释变量对被解释变量的影响是否显著进行检验,即进行t检验。(1分) 13.给定二元回归模型:

yt?b0?b1x1t?b2x2t?ut,请叙述模型的古典假定。

解答:(1)随机误差项的期望为零,即E(ut)?0。(2)不同的随机误差项之间相互独立,即

2cov(ut,us)?E[(ut?E(ut))(us?E(us)]?E(utus)?0(1分)。(3)随机误差项的方差与t无关,为一个常数,即var(ut)??。

即同方差假设(1分)。(4)随机误差项与解释变量不相关,即cov(xjt,ut)设自动成立(1分)。(5)随机误差项ut为服从正态分布的随机变量,即ut即假定各解释变量之间不存在线性关系,即不存在多重共线性(1分)。

?0??(j?1,2,...,k)。通常假定xjt为非随机变量,这个假

?N(0,?2)(1分)。(6)解释变量之间不存在多重共线性,

14.在多元线性回归分析中,为什么用修正的决定系数衡量估计模型对样本观测值的拟合优度?

解答:因为人们发现随着模型中解释变量的增多,多重决定系数R的值往往会变大,从而增加了模型的解释功能。这样就使得人们认为要使模型拟合得好,就必须增加解释变量(2分)。但是,在样本容量一定的情况下,增加解释变量必定使得待估参数的个数增加,从而损失自由度,而实际中如果引入的解释变量并非必要的话可能会产生很多问题,比如,降低预测精确度、引起多重共线性等等。为此用修正的决定系数来估计模型对样本观测值的拟合优度(3分)。 15.修正的决定系数R及其作用。

22解答:R2?e/n?k?1,

?1?(2分)其作用有:(1)用自由度调整后,可以消除拟合优度评价中解释变量多少对决定系数计

(y?y)/n?1?2t2t算的影响;(2分)(2)对于包含解释变量个数不同的模型,可以用调整后的决定系数直接比较它们的拟合优度的高低,但不能用原来未调整的决定系数来比较(1分)。

16.常见的非线性回归模型有几种情况? 解答:常见的非线性回归模型主要有:

(1) 对数模型ln(2) 半对数模型

yt?b0?b1lnxt?ut(1分)

yt?b0?b1lnxt?ut或lnyt?b0?b1xt?ut(1分)

(3) 倒数模型

y?b0?b1111?u或?b0?b1?u(1分) xyx(4) 多项式模型

y?b0?b1x?b2x2?...?bkxk?u(1分)

和Gompertz成长曲线模型

(5)

K成长曲线模型包括逻辑成长曲线模型yt?1?b0e?b1tyt?eK?b0b1t(1分)

17.观察下列方程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。 ①

yt?b0?b1xt3?ut ②yt?b0?b1logxt?ut

③ logyt?b0?b1logxt?ut ④yt?b0/(b1xt)?ut

解答:①系数呈线性,变量非线性;(1分)②系数呈线性,变量非呈线性;(1分)③系数和变量均为非线性;(1分)④系数和变量均为非线性。(2 分)

18. 观察下列方程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。 ①

yt?b0?b1logxt?ut ②yt?b0?b1(b2xt)?ut yt?b0/(b1xt)?ut ④yt?1?b0(1?xtb1)?ut

解答:①系数呈线性,变量非呈线性;(1分)②系数非线性,变量呈线性;(1分)③系数和变量均为非线性;(2分)④系数和变量均为非线性(1分)。

19. 异方差性是指模型违反了古典假定中的同方差假定,它是计量经济分析中的一个专门问题。在线性回归模型中,如果随机误差项的方差不是常数,即对不同的解释变量观测值彼此不同,则称随机项

ui具有异方差性,即var(ui)??t2?常数 (t=1,2,??,

n)。(3分)例如,利用横截面数据研究消费和收入之间的关系时,对收入较少的家庭在满足基本消费支出之后的剩余收入已经不多,用在购买生活必需品上的比例较大,消费的分散幅度不大。收入较多的家庭有更多可自由支配的收入,使得这些家庭的消费有更大的选择范围。由于个性、爱好、储蓄心理、消费习惯和家庭成员构成等那个的差异,使消费的分散幅度增大,或者说低收入家庭消费的分散度和高收入家庭消费得分散度相比较,可以认为牵着小于后者。这种被解释变量的分散幅度的变化,反映到模型中,可以理解为误差项方差的变化。(2分)

20.产生原因:(1)模型中遗漏了某些解释变量;(2)模型函数形式的设定误差;(3)样本数据的测量误差;(4)随机因素的影响。(2分)

产生的影响:如果线性回归模型的随机误差项存在异方差性,会对模型参数估计、模型检验及模型应用带来重大影响,主要有:(1)不影响模型参数最小二乘估计值的无偏性;(2)参数的最小二乘估计量不是一个有效的估计量;(3)对模型参数估计值的显著性检验失效;(4)模型估计式的代表性降低,预测精度精度降低。(3分)

21.检验方法:(1)图示检验法;(1分)(2)戈德菲尔德—匡特检验;(1分)(3)怀特检验;(1分)(4)戈里瑟检验和帕克检验(残差回归检验法);(1分)(5)ARCH检验(自回归条件异方差检验)(1分)

22.解决方法:(1)模型变换法;(2分)(2)加权最小二乘法;(2分)(3)模型的对数变换等(1分)