直角三角形的面积等于两条直角边长度乘积的一半。 同底同高的三角形面积是平行四边形面积的一半。
两条平行线间距离相等,所以在两条平行线间可以画出无数个面积相等的三角形。
★把一个长方形框拉成平行四边形,周长不变,高变短了,面积变小了。
六《数学广角——植树问题》知识点
要想了解植树中的数学并学会怎样解决植树问题,首先要牢记三要素: ①总路线长. ②间距(棵距)长. ③棵数.
只要知道这三个要素中任意两个要素.就可以求出第三个。 关于植树的路线,有封闭与不封闭两种路线。 1.不封闭路线 例:如图
① 若题目中要求在植树的线路两端都植树,则棵数比段数多1.如上图把总长平均分成5段,但植树棵数是6棵。 全长、棵数、株距三者之间的关系是:
棵数=间隔数+1
全长=株距×(棵数-1) 株距=全长÷(棵数-1)
② 如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为: 全长=株距×棵数; 棵数=全长÷株距; 株距=全长÷棵数。
5
③ 如果植树路线的两端都不植树,则棵数就比②中还少1棵。
棵数=段数-1=全长÷株距-1.
如右图所示.段数为5段,植树棵数为4棵。
株距=全长÷(棵数+1)。
2.封闭的植树路线
例如:在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。如右图所示。
棵数=段数=周长÷株距.
例1 有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆,可栽多少根电线杆?
分析 要以两棵电线杆之间的距离作为分段标准.公路全长可分成若干段.由于公路的两端都要求栽杆,所以电线杆的根数比分成的段数多1。 解:以10米为一段,公路全长可以分成.. 900÷10=90(段)
共需电线杆根数:90+1=91(根) 答:可栽电线杆91根。
例2 马路的一边每相隔9米栽有一棵柳树.张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?
6
分析 张军5分钟看到501棵树意味着在马路的两端都植树了;只要求出这段路的长度就容易求出汽车速度. 解:5分钟汽车共走了: 9×(501-1)=4500(米), 汽车每分钟走:4500÷5=900(米), 汽车每小时走:
900×60=54000(米)=54(千米) 列综合式:
9×(501-1)÷5×60÷1000=54(千米) 答:汽车每小时行54千米。
例3、一个圆形池塘,它的周长是150米,每隔3米栽种一棵树.问:共需树苗多少株?
分析 根据四周人数和每边人数的关系可以知:
每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。
解:方阵最外层每边人数:60÷4+1=16(人) 整个方阵共有学生人数:16×16=256(人) 答:方阵最外层每边有16人,此方阵中共有256人。
例4 有一正方形操场,每边都栽种17棵树,四个角各种1棵,共种树多少棵? 分析 方阵每向里面一层,每边的个数就减少2个.知道最外面一层每边放14个,就可以求第二层及第三层每边个数.知道各层每边的个数,就可以求出各层总数。 解:最外边一层棋子个数:(14-1)×4=52(个) 第二层棋子个数:(14-2-1)×4=44(个) 第三层棋子个数:(14-2×2-1)×4=36(个). 摆这个方阵共用棋子: 52+44+36=132(个) 还可以这样想:
中空方阵总个数=(每边个数一层数)×层数×4进行计算。
7
解:(14-3)×3×4=132(个) 答:摆这个方阵共需132个围棋子。
例5 在一条路上按相等的距离植树.甲乙二人同时从路的一端的某一棵树出发.当甲走到从自己这边数的第22棵树时,乙刚走到从乙那边数的第10棵树.已知乙每分钟走36米.问:甲每分钟走多少米?
分析 ①在圆形花坛上栽花,是封闭路线问题,其株数=段数.② 由于相邻的两棵芍药花之间等距的栽有两棵月季,则每6米之中共有3棵花,且月季花棵数是芍药的2倍。
解:共可栽芍药花:180÷6=30(棵) 共种月季花:2×30=60(棵) 两种花共:30+60=90(棵) 两棵花之间距离:180÷90=2(米)
相邻的花或者都是月季花或者一棵是月季花另一棵是芍药花,所以月季花的株距是2米或4米。
答:种芍药花30棵,月季花60棵,两棵月季花之间距离为2米或4米。
例6一个街心花园如右图所示.它由四个大小相等的等边三角形组成.已知从每个小三角形的顶点开始,到下一个顶点均匀栽有9棵花.问大三角形边上栽有多少棵花?整个花园中共栽多少棵花?
分析 ①从已知条件中可以知道大三角形的边长是小三角形边长的2倍.又知道每个小三角形的边上均匀栽9株, 则大三角形边上栽的棵数为
9×2-1=17(棵)。
② 又知道这个大三角形三个顶点上栽的一棵花是相邻的两条边公有的,所以大三角形三条边上共栽花
(17-1)×3=48(棵)。
8