《数字电路逻辑设计》--逻辑函数及其化简练习题 下载本文

《数字电路逻辑设计》练习题

---------- 逻辑函数及其化简

一. 用公式证明下列各等式。

1.AB?AC?(B?C)D?AB?AC?D原式左边= AB?AC?BD?CD= AB?AC+BC+BCD

= AB?AC+D= 右边2. A?C?A?B?A?C?D+BC?A?BC原式左边A?C(1+D)+A?B+BC =A?C+A?B+BC=(AC+B)+BC=A?BC+BC=A+BC=右边3. BCD?BCD?ACD+ABC?D+A?BCD+BC?D+BCD?BC?BC+BD原式左边=BCD+A?BCD?BCD+BCD+ABC?D+BC?D+ACD=BCD+A?BCD+BD+BC?D+ACD=BCD+ACD+BCD+BD+BC?D =BCD+ACD+BD+DC+BC?D=BCD+BD+DC+BC?D=C(D+B)+ B(D+C)=BC+BD+BC=右边

4. AB?B+D?CD+BC+A?BD+A+CD=1原式左边=AB?B+D?CD?BC+A?BD?A+C+D=(AB+ B+D+CD)(B+C)+C+D

=(B+D)(B+C)+C+D =BC+BD+CD+C+D=1=右边

二. 写出下列各逻辑函数的最小项表达式及其对偶式、反演式 的最小项表达式

1. F=ABCD+ACD+BD=?m(4,6,11,12,14,15)F??m(0,1,2,3,5,7,8,9,10,13)

F*=?m(2,5,6,7,8,10,12,13,14,15)

2. F=AB+AB+BC=?m(2,3,4,5,7)F??m(0,1,6)

F*=?m(1,6,7)3. F=AB+C?BD+A?D?B?C=?m(1,5,6,7,8,9,13,14,15)

F??m(0,2,3,4,10,11,12 ) F*=?m(3,4,5,11,12,13,15)三. 用公式法化简下列各式

1. F=ABC+A?CD+AC=A(BC+C)+A?CD=AC?AB?A?CD =C(A?AD)?AB=AC+CD+AB2. F=AC?D+BC+BD+AB+AC+B?C=AC?D+BC+BD+AB+AC+BC+B?C

=AC?D+BC+AC+B=AD+C+B3. F=(A+B)(A+B+C)(A+C)(B+C+D)?F*= AB+ABC+AC+BCD= AB+AC+BCD=AB+AC ? F=(F*)*=(A+B)(A+C)=AC+AB4. F=AB+A?B?BC+B?CF?AB+A?B?BC+B?C?AB+A?B?BC+B?C?AC?AB?BC?B?C?AC?AB?B?C?AC5. F=AC+BC?B(AC?AC)F?(A?C)(B?C)?ABC?ABC

?AB?A?C?BC?C?ABC?ABC?AB?C?(A?B)C?AC?BC

四. 用图解法化简下列各函数。

1. F=ABC+A?CD+AC

AB CD 00 01 11 10 00 1 1 01 1 1 1 1 11 1 10 1 F=?m(8,9,10,11)??m(1,5,9,13)??m(8,9,12,13)?CD?AB?AC2. F=(A+B)(A+B+C)(A+C)(B+C+D) AB CD 00 01 11 10 00 0 1 0 0 01 0 1 0 0 11 0 1 1 1 10 0 1 1 1

F = ∑m(4,5,6,7)+ ∑m(10,11,14,15)

=AB+AC

3. F(A,B,C,D) = Σm(0,1,3,5,6,8,10,15)

AB

CD 00 01 11 10

00 1 1

01 1 1

11 1 1

10 1 1

F = ∑m(0,1)+∑m(1,3)+ ∑m(1,5)+∑m(8,10)+ ∑m(6)+∑m(15)

F=A?B?C+A?BD+A?CD?AB?D?ABCD?ABCD

4. F(A,B,C,D)=?m(4,5,6,13,14,15)AB CD 00 01 11 10 00 1 01 1 1 11 1

10 1 1

F??m(4,5)??m(6,14)??m(13,15)?ABC?BCD?ABD

5. F(A,B,C,D)??m(4,5,6,8,9,10,13,14,15) AB CD 00 01 11 10 00 1 1 01 1 1 1 11 1 10 1 1 1

6.

F(A,B,C,D)??m(0,1,4,7,9,10,15)? ?d(2,5,8,12,13)

AB

CD 00 01 11 10 F??m(0,1,4,5,8,9,12,13)00 1 1 × × ??m(5,7,13,15)01 1 × × 1 ??m(0,3,8,10)11 1 1 10 × 1 ?C?BD?B?D

7.

F(A,B,C,D)??m(4,5,6,13,14,15) ??d(8,9,10,11)

AB

CD 00 01 11 10 F??m(9,11,13,15)00 1 × ??m(4,5)??m(6,14) 01 1 1 × ?AD?ABC?BCD11 1 × 10 1 1 ×

8. F(A,B,C,D)??M(5,7,13,15)?B?D

9.

F(A,B,C,D)??M(1,3,9,10,11,14,15)

AB CD 00 01 11 10

00 F??M(1,3,9,11)?01 0 0 ?M(10,11,14,15) 11 0 0 0 ?(B?D)(A?C)10 0 0