Éñ¾­ÍøÂçÔÚÊýѧ½¨Ä£¾ºÈüÖеÄÓ¦Óà ÏÂÔØ±¾ÎÄ

1.5¸ø¶¨ÊäÈëÐźÅÍø¸ñÊä³öÐźÅ10.50-0.5-1-1.50123456ͼ3-3 ʹÓÃnewlinº¯Êý½øÐбƽüЧ¹ûÇúÏß

Îó²îÇúÏß1

0.80.60.40.20-0.2-0.40123456

ͼ3-4 newlinº¯Êý±Æ½üµÄÎó²îͼ

ÏÂÃæÊ¹ÓÃʵÀýÑÝʾnewlindº¯ÊýµÄʹÓÃ.

£¨1£© Ê×ÏÈ£¬²úÉúÊäÈëѵÁ·Ñù±¾ºÍѵÁ·Ä¿±êÑù±¾. %matlab³ÌÐò

time1=0:.01:2; time2=2:.01:4; time3=4:.01:6;

time=[time1 time2 time3];

t=[cos(time1*pi) cos(time2*3*pi) cos(time3*5*pi)]; q=length(t); p=zeros(6,q);

p(1,2:q)=t(1,1:(q-1)); p(2,3:q)=t(1,1:(q-2));

25

p(3,4:q)=t(1,1:(q-3)); p(4,5:q)=t(1,1:(q-4)); p(5,6:q)=t(1,1:(q-5));

p(6,7:q)=t(1,1:(q-6));

£¨2£© ʹÓÃnewlindº¯ÊýÉè¼ÆÏßÐÔ²ã. net=newlind(p,t); a=sim(net,p);

plot(time,t,time,a,'k-o')

legend('¸ø¶¨ÊäÈëÐźÅ','ÍøÂçÊä³öÐźÅ') figure

plot(time,a-t) title('Îó²îÇúÏß')

ÏßÐÔ²ãÍøÂ纯Êý±Æ½üЧ¹ûÈçͼ3-5ºÍͼ3-6Ëùʾ.

1.5¸ø¶¨ÊäÈëÐźÅÍøÂçÊä³öÐźÅ10.50-0.5-1-1.50123456

ͼ3-5 ÏßÐÔ²ãÉè¼Æº¯Êýnewlindº¯Êý±Æ½üЧ¹û

Îó²îÇúÏß0.40.20-0.2-0.4-0.6-0.8-10123456

ͼ3-6 ÏßÐÔ²ãÉè¼Æº¯Êýnewlindº¯Êý±Æ½üÎó²îͼ

3.1.3 »ùÓÚÉñ¾­ÍøÂ綨»ý·Ö¼ÆËãÄ£ÐÍ

È˹¤Éñ¾­ÍøÂçµÄÖ÷ÒªÌØµãÊÇÆä·ÇÏßÐÔÓ³ÉäÄÜÁ¦,ÕâÖÖÄÜÁ¦Ê¹µÃÉñ¾­ÍøÂçÄܹ»±Æ½üÈκθø¶¨µÄÁ¬Ðøº¯Êý.´ÓÓ¦ÓõĽǶÈÀ´¿´,Ò»¸öÈ˹¤Éñ¾­ÍøÂçÊǸù¾ÝijÖÖ¡°Ä¿±ê¡±¶ø¹¹ÔìµÄ£¬

26

ÕâÑùµÄÄ¿±êÒ»°ãÇéÐÎÏÂÊÇÒ»¸ö¶àÔª»òÒ»Ôªº¯Êý£¬³ÆÖ®Îª¡°Ä¿±êº¯Êý¡±£¬¿Éͨ¹ý¶ÔȨֵµÄѧϰ£¬Ê¹µÃÄ¿±êº¯Êý¾¡¿ÉÄܱƽüÓÚÈËÃÇÀíÏëÖÐÄ¿±êº¯Êý.»ùÓÚÕâЩ˼Ï룬Ìá³öÁËÒ»ÖÖ»ùÓÚ»ý·Ö¶¨ÒåµÄÉñ¾­ÍøÂçÄ£ÐÍ.ÏÖÎÒÃÇÀ´È·¶¨Ñ§Ï°ÑµÁ·Ñù±¾Êý¾Ý,Ê×ÏȶÔѵÁ·Ñù±¾Êý¾Ý×÷Ô¤´¦Àí£º¼ÙÉè±»»ýf(x)ÔÚÇø¼ä[a,b]ÉÏÓÐnÖÖ·Ö·¨T1,T2,?,Tn£¬ÆäÖл®·ÖTjΪ£º

Xj?{x0j,x1j,?,xmj}£¬j?1,2,?,n

Áî?X?(?X1,?X2,??Xn)£¬ÆäÖУº?Xj?(?x1j,?x2j,??xmj)£¬j?1,2,?,n

?xij?xij?x(i?1)j£¬ÔòѧϰѵÁ·Ñù±¾Êý¾Ý¼¯Îª{((?x1j,?x2j,?,?xmj),d)|j?1,2,?,n}£¬ÆäÖÐ

dΪ»ý·Ö?f(x)dxµÄ׼ȷֵ.ÄÇô£¬»ùÓÚ»ý·Ö¶¨ÒåµÄÉñ¾­ÍøÂçÇó½âÊýÖµ»ý·ÖÄ£ÐÍÈçͼ3-7

abËùʾ.

?x1 ?x2??f(?1f(?2) ?y

?xmf(?m) ͼ3-7 Çó½âÊýÖµ»ý·ÖÄ£ÐÍ

ÆäÖÐf(?i)ΪÉñ¾­ÍøÂçȨֵ£¬ÉèÉñ¾­ÍøÂçµÄȨֵ¾ØÕóΪ£ºW?[w1,w1,?,wm]£¬ÆäÖÐ

wi?f(?i)£¬??[?1,?2,??m]T£»¼¤Àøº¯ÊýΪºãµÈº¯Êý£¬·§ÖµÈ¡0£¬Ôò¸ÃÍøÂçÊä³ö

y(k)??wi?xi(k)??f(?i)?xi(k)?W'?X(k)

i?1i?1mm¶¨ÒåÎó²î´ú¼Ûº¯Êý£º

e(k)?d?y(k)£¬k?0,1,?,n?1

ÆäÖÐnΪѵÁ·Ñù±¾µãÊý£¬f(x)Ϊ±»»ýº¯Êý.

ÉèÎó²î¾ØÕóΪE?[e(0),e(1),?,e(n?1)]T£¬ÔòÓÐÐÔÄÜÖ¸±ê£º

1n?1212J(k)??e(k)?E2

2k?02?2ΪEuclidean·¶Ê½µÄƽ·½.¸ù¾ÝÌݶÈϽµ·¨Ñ§Ï°¹æÔò£¬¹ÊȨֵµ÷Õû¹«Ê½ÈçÏ£º

2??i??u?J(k)?e(k)?y(k)?f ????e(k)?y(k)?f??i ?ue(k)??xi?f'(?i)

?i(k?1)??i(k)???i(k)

??i(k?1)?ue(k)??xi?f'(?i)

ÆäÖÐuΪѧϰЧÂÊ£¬ÇÒ0?u?1.

»ùÓÚÉñ¾­ÍøÂçµÄ¶¨»ý·ÖѧϰËã·¨

Éñ¾­ÍøÂçѧϰµÄÄ¿±ê¾ÍÊǶÔȨֵµÄѧϰ£¬²ÎÕÕÒ»°ãÉñ¾­ÍøÂçµÄѧϰ¹ý³Ì£¬ÄÇô£¬Éñ¾­ÍøÂçÇó»ý·ÖµÄѧϰ²½ÖèÈçÏ£º

27

step1 »ñÈ¡Éñ¾­ÍøÂçѵÁ·Ñù±¾¼¯£º{((?x1j,?x2j,?,?xmj),d)|j?1,2,?,n}£»Ëæ»ú²úÉúÍøÂçȨֵW?[w1,w1,?,wm]£¬wi?f(?i)£¬??[?1,?2,??m]T£»¸ø¶¨Îó²î¾«¶È?£»ÁîJ?0.

step2 ¼ÆËãÍøÂçÊä³ö£ºy(k)??wi?xi(k)??f(?i)?xi(k)?W'?X(k)

i?1i?1mmstep3 ¼ÆËãÎó²îº¯Êý£ºe(k)?d?y(k)

1n?1212step4 ¼ÆËãÐÔÄÜÖ¸±ê£ºJ(k)??e(k)?E2

2k?021step5 ¼ÆËãѧϰÂÊ£ºu(k)?m

2??xif'(?i)i?1step6 Ȩֵµ÷Õû£º?i(k?1)??i(k?1)?ue(k)??xi?f'(?i)

step7 Èç¹ûÑù±¾¼¯Î´ÑµÁ·Í꣬·µ»Østep2ÖØ¸´ÉÏÊö²½Ö裻·ñÔò£¬ÅжÏÐÔÄÜÖ¸±êÊÇ·ñJ???£¬Èç¹ûÊÇ£¬ÁîJ?0£¬·µ»Østep2ÖØ¸´ÉÏÊö²½Ö裬·ñÔò£¬½áÊøÍø¸ñѵÁ·£¬Êä³öÍø¸ñȨֵ£ºW.

ÈçÇó½â¶¨»ý·Ö?excos(100x)dx£¬¾«È·µ½8λÓÐЧÊý×Ö.

0?MATLAB±à³ÌʵÏÖ£º %¶¨»ý·Öº¯Êý function y=f(x)

y=exp(x).*cos(100.*x); clc;

format long a=0;

b=pi; %a,bΪ»ý·ÖÇø¼ä

tol=0.00000001; %tolΪ¾«È·¶È J=2*tol;

m=20; %½«Çø¼ä[a,b]·ÖΪm+1¸ö²»µÈ¾àµÄÇø¼ä

p=6.389; %pΪ¶¨»ý·ÖµÄ¾«È·Öµ n=50; %nΪѵÁ·Ñù±¾¸öÊý X=zeros(m+1,n); x=zeros(m,n); c=zeros(m,n); w=zeros(m,n);

X(1,:)=a; X(m+1,:)=b;

for i=1:n

X(2,i)=a+0.1*rand; X(m,i)=b-0.1*rand;

28