【附20套名校中考真题】2019年中考数学试题分类汇编:考点(18)相交线与平行线(含解析) 下载本文

2019中考数学试题分类汇编:考点18相交线与平行线

一.选择题(共30小题)

1.(2019?邵阳)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为( )

A.20° B.60° C.70° D.160° 【分析】根据对顶角相等解答即可. 【解答】解:∵∠AOD=160°, ∴∠BOC=∠AOD=160°, 故选:D.

2.(2019?滨州)如图,直线AB∥CD,则下列结论正确的是( )

A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°

【分析】依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°. 【解答】解:如图,∵AB∥CD, ∴∠3+∠5=180°, 又∵∠5=∠4, ∴∠3+∠4=180°, 故选:D.

3.(2019?泰安)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为( )

A.14° B.16° C.90°﹣α D.α﹣44°

【分析】依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出∠1=44°﹣30°=14°. 【解答】解:如图,∵矩形的对边平行, ∴∠2=∠3=44°,

根据三角形外角性质,可得∠3=∠1+30°, ∴∠1=44°﹣30°=14°, 故选:A.

4.(2019?怀化)如图,直线a∥b,∠1=60°,则∠2=( )

A.30° B.60° C.45° D.120°

【分析】根据两直线平行,同位角相等即可求解. 【解答】解:∵a∥b, ∴∠2=∠1, ∵∠1=60°, ∴∠2=60°.

故选:B.

5.(2019?深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是( )

A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180° D.∠1+∠4=180°

【分析】依据两直线平行,同位角相等,即可得到正确结论. 【解答】解:∵直线a,b被c,d所截,且a∥b, ∴∠3=∠4, 故选:B.

6.(2019?绵阳)如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )

A.14° B.15° C.16° D.17°

【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.

【解答】解:如图,∵∠ABC=60°,∠2=44°, ∴∠EBC=16°, ∵BE∥CD,

∴∠1=∠EBC=16°, 故选:C.

7.(2019?泸州)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是( )

A.50° B.70° C.80° D.110°

【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案.

【解答】解:∵∠BAC的平分线交直线b于点D, ∴∠BAD=∠CAD, ∵直线a∥b,∠1=50°, ∴∠BAD=∠CAD=50°,

∴∠2=180°﹣50°﹣50°=80°. 故选:C.

8.(2019?乌鲁木齐)如图把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )

A.20° B.30° C.40° D.50°

【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据平角等于180°列式计算即可得解.