(?u0x)15(2)根据:?=0.37
vxx,知?=0.0572m=57.2mm
(3) 根据:Re=? 知Re =2.75×106.
0.074Cf1Re5?则:
=
1700Re2?u0=3.196×10-3
A?2?1.2?3,??999.17kg/m3
根据:
DfDf?CfA
2=16.57N
22.若球形尘粒的密度?m=2500kg/ m3,空气温度为 20℃ 求允许采用斯托克斯公式计算尘粒在空气中悬浮速度的最大粒径(相当于Re=1)
解:由查表知:t?20℃,?=0.0183×10-3Pa.s
?=15.7×10-6m2/s,?=1.205kg/m3
udd2(?m??)g18?u=
由Re=?及
Re?d 可得
d2(?m??)g18?=
d=6×10-2mm
23.某气力输送管路,要求风速 u0为砂粒悬浮速度u 的5倍,已知砂粒粒径d?0.3mm,密度?m=2650kg/m3 空气温度为20℃,求风速u0 值。
13解:假设Re=10—103,将Cd=Re代入u=
33
4(?m??)gd3Cd?
3?62??1.205kg/m,??15.7?10m/s 其中
u=
4(?m??)gdRe39?
ud将Re=?代入上式得:
u=2.03m/s 校核:Re=38.8在假设范围里 则风速为u0=5u=5×2.03=10.15m/s
24.已知煤粉炉膛中上升烟气流的最小速度为0.5m/s 烟气的运动粘滞系数??230?10m2/s, 问直径d=0.1mm的煤粉颗粒是沉降下来还
?6是被烟气带走?已知烟气的密度?=0.2kg/ m3,煤粉的密度
?m=1.3×103 kg/ m3
Re?ud?0.22?1解:
?
d2(?m??)gu?18?故有
u=0.154m/s?0.5m/s 所以可被烟气带走
第九章 一元气体动力学基础
34
1.若要求
?p?v22小于0.05时,对20℃空气限定速度是多少?
?P0M22?v2=4知 解:根据
M24< 0.05?M<0.45,C?kRT?1.4?287?293?343m/s
v?MC?0.45?343?153m/s
即对20℃ 空气限定速度为v<153m/s,可按不压缩处理。
2.有一收缩型喷嘴,已知p1=140kPa(abs),p2=100kPa(abs),v1=80m/s,T1=293K,求2-2断面上的速度v2。
解:因速度较高,气流来不及与外界进行热量交换,且当忽略能量
22010(T?T)?vv121损失时,可按等熵流动处理,应用结果:2 =,其中
T1=293K
?1=
p1RT1=1.66kg/m3.
1P?2??1(2)kP1=1.31kg/m3.
P2?2RT2==266 K
解得:v2=242m/s
3.某一绝热气流的马赫数M=0.8,并已知其滞止压力p0=5×98100N/m2,温度t0=20℃,试求滞止音速c0,当地音速c,气流速度v和气流绝对压强p各为多少? 解:T0=273+20=293K,C0=
KRT0=343m/s
35
根据
T0K?12?1?MT2知
kRT?323m/s,v?MC?258.4m/s
T=260 K,C?p0?T0???p?T?k?k?1
2解得:p?3.28?98100N/m
4.有一台风机进口的空气速度为v1,温度为T1,出口空气压力为p2,温度为T2,出口断面面积为A2,若输入风机的轴功率为N,试求风机质量流量G(空气定压比热为cp)。 解:由工程热力学知识:
??v2N?G???h?2?????GGRTGRTv??h?cPT??ApAPA,,其中
?v12?1GRT22????N?G??cPT2?()??(cPT1?)?2p2A2?2????? ∴
由此可解得G
5.空气在直径为10.16cm的管道中流动,其质量流量是1kg/s,滞止温度为38℃,在管路某断面处的静压为41360N/m2,试求该断面处的马赫数,速度及滞止压强。 解:由G=?vA
p??RT?GRTv=pA
T0k?1v2?1??T2kRTT=282k
36