《离散数学》--随堂练习(2019) 下载本文

第二章 谓词逻辑

2.1 谓词逻辑的基本概念

41.设F(x):x是人,G(x):x早晨吃米饭。命题“有些人早晨吃米饭”在谓词逻辑中的符号化公式是( D )

A.(?x)(F(x)? G(x)) B.(?x)(F(x)? G(x)) C.(?x)(F(x)? G(x)) D.(? x)(F(x)? G(x))

42.设F(x):x是火车,G(x):x是汽车,H(x,y):x比y快。命题“某些汽车比所有火车慢”的符号化公式是( B )

A.?y(G(y)??x(F(x)?H(x,y))) B.?y(G(y)??x(F(x)?H(x,y))) C.?x ?y(G(y)?(F(x)?H(x,y))) D.?y(G(y)??x(F(x)?H(x,y)))

43.设F(x):x是火车,G(x):x是汽车,H(x,y):x比y快。命题“说有的火车比所有汽车都快是正确的”的符号化公式是( D )

A.?y(F(y)??x(G(x)?H(x,y))) B.?y(F(y)??x(G(x)?H(x,y))) C.?x ?y(F(y)?(G(x)?H(x,y))) D.?x(F(x)??y (G(y)?H(x,y)))

44.设Q(x):x 是有理数,R(x):x是实数。命题“每一个有理数是实数”在谓词逻辑中的符号化公式是( A )

A.(?x)(Q(x)? R(x)) B.(?x)(Q(x)?R(x)) C.(?x)(Q(x)? R(x)) D.(? x)(Q(x)? R(x)) 45.设S(x):x是运动员,J(y):y是教练员,L(x,y):x钦佩y。命题“所有运动员都钦佩一些教练员”的符号化公式是( C )

A.?x(S(x)? ? y(J(y)? L(x,y))) B.?x ?y(S(x)?(J(y)? L(x,y))) C.?x(S(x)? ?y(J(y)? L(x,y))) D.?y?x(S(x)?(J(y)? L(x,y))) 46.设S(x):x是大学生,L(y):y是运动员,A(x,y):x钦佩y。命题“有些大学生不佩服运动员”的符号化公式是( A )

A.?x(S(x)? ? y(L(y)? ?A(x,y))) B.?x ?y(S(x)?(L(y)? A(x,y))) C.?x(S(x)? ?y(L(y)? A(x,y))) D.?y?x(S(x)?(L(y)? A(x,y))) 47.设C(x):x是国家选手,L(y):y是运动员,O(x):x是老的。命题“所有老的国家选手都是运动员”的符号化公式是( B )

A.?x(C(x)? O(x)? ?L(x))

5

B.?x(C(x)? O(x)? L(x)) C.?x(C(x)? O(x)? L(x)) D.?y?x(C(x)? O(x)? L(x )) 48.设J(y):y是教练员,j:金教练,O(x):x是老的,V(y):y是健壮的。命题“金教练既不老,但也不健壮”的符号化公式是( B )

A.J(j)? ?O(j)? ? V(j) B.J(j)? ?O(j)? ? V(j) C.J(j)??O(j)? ? V(j) D.J(j)? O(j)? ? V(j) 49.设R(x):x是实数,B(y,x):x大于y。命题“对于每一个实数x,存在一个更大的实数”利用谓词公式翻译这个命题( A ) A.(?x)(R(x)?(?y)(R(y)? B(y,x))) B.(?x)(R(x)?(?y)(R(y)? B(y,x))) C.(?x)(R(x)?(?y)(R(y)? B(y,x))) D.(? x)(R(x)?(?y)(R(y)? B(y,x))) 50.设L(x):x是有限个数的乘积,N(x):x为零,E(x,y):x是y的因子。命题“如果有限个数的乘积为零,那么至少有一个因子等于零”利用谓词公式翻译这个命题( B ) A.(?x)(L(x)?N(x)?(?y)(E(x,y)?N(x))) B.(?x)(L(x)?N(x)?(?y)(E(x,y)?N(x))) C.(?x)(L(x)?N(x)?(?y)(E(x,y)?N(x))) D.(?x)(L(x)?N(x)?(?y)(E(x,y)?N(x)))

2.2 谓词逻辑公式

51.下面公式( B )没有自由变元

A.(?x)(R(x)?(?y)(R(z)? B(y,x))) B.(?x)(R(x)?(?y)(R(y)? B(y,x))) C.(?x)(R(x)?(?y)(R(y)? B(u,x))) D.(? x)(R(x)?(?y)(R(y)? B(y,tx))) 52.设个体域为整数集,下列真值为真的公式是( C ) A.?y?x (x – y =2) B.?x?y(x – y =2) C.?x?y(x – y =2) D.?x?y(x – y =2) 53. 设个体域为整数集,下列公式中 ( C ) 不是命题

A.?x?y(x y =1) B.?x?y(x y =y) C.?x (x y =x) D.?x?y(x y =2) 54. 下面 ( C ) 不是命题

A.(?x)P(x) B.(?x)P(x) C.? x ?P(x,y) D.? x ? y?P(x,y)

1,2?,a?1,f?1??2,f?2??1,P?1??F,P?2??T,Q?1,1??Q?1,2??T, 55.论域D??6

Q?2,1??Q?2,2??F, 则下列个公式赋值后肯定为真的是( A )

A.?x?P?x??Q?f?x?,a?? B.?xP?f?x???Q?x,f?a?? C.?y?P?x??Q?x,a?? D.?x?y?P?x??Q?x,y?? 56. 下列式子中正确的是( D )

A.?(?x)P(x)?(?x)P(x) B.?(?x)P(x)?(?x)? P(x) C.?(?x)P(x)?(?x)? P(x) D.?(?x)P(x)?(?x)? P(x)57.下面谓词公式是永真式的是( B )

A.P(x)? Q(x) B.(?x)P(x)?(?x)P(x) C.P(a)?(?x)P(x) D.? P(a)?(?x)P(x)

58. 下列式子中正确的是( D )

A.?(?x)P(x)?(?x)P(x) B.?(?x)P(x)?(?x)? P(x)C.?(?x)P(x)?(?x)? P(x) D.?(?x)P(x)?(?x)? P(x)59. 请选择??x ?yP(x,y)的前束合取范式为( D )

A.? x ??yP(x,y) B.? x ?y?P(x,y) C.? x ?y?P(x,y) D.? x ? y?P(x,y) 60 ??xP?x???xQ?x????x?P?x??Q?x??的前束合取范式为( D )

A.???xP?x???xQ?x????x?P?x??Q?x?? B.??x?P?x???x?Q?x????x?P?x??Q?x?? C.?u?v?x((?P?u???Q?v?)?P?x??Q?x?)

D.?u?v?x((?P?u??P?x??Q?x?)?(?Q?v??P?x??Q?x?)) 61. ??xP?x???xQ?x????x?P?x??Q?x??的前束析取范式为( C ) A.???xP?x???xQ?x????x?P?x??Q?x?? B.??x?P?x???x?Q?x????x?P?x??Q?x?? C.?u?v?x((?P?u???Q?v?)?P?x??Q?x?)

D.?u?v?x((?P?u??P?x??Q?x?)?(?Q?v??P?x??Q?x?))

62. ?x(P(x)?Q(x,y))?(? yP(y)∧?zQ(y,z))的前束合取范式为( D ) A.?x?(?P(x)∨Q(x,y))∨(? yP(y)∧?zQ(y,z)) B.?x(P(x)∧?Q(x,y))∨(? uP(u)∧?zQ(y,z)) C.?x? u?z((P(x)∧?Q(x,y))∨(P(u)∧Q(y,z)))

7

D.?x? u?z((P(x)∨P(u))∧(?Q(x,y) ∨P(u)))∧(P(x)∨Q(y,z))∧(? Q(x,y)∨Q(y,z))))

63. ?x(P(x)?Q(x,y))?(? yP(y)∧?zQ(y,z))的前束析取范式( C ) A.?x?(?P(x)∨Q(x,y))∨(? yP(y)∧?zQ(y,z)) B.?x(P(x)∧?Q(x,y))∨(? uP(u)∧?zQ(y,z)) C.?x? u?z((P(x)∧?Q(x,y))∨(P(u)∧Q(y,z))) D.?x? u?z((P(x)∨P(u))∧(?Q(x,y) ∨P(u)))∧(P(x)∨Q(y,z))∧(? Q(x,y)∨Q(y,z)))) 64.L?x,y?:x?y,当客体域为( A ),公式?x?yL(x,y)不是有效的 A.自然数集 B.整数集 C.有理数集 D.实数集

2.3 谓词演算的推理规则

65.下列推导第( B )步出错

??x(P(x)∧Q(x))??(? xP(x)∧?xQ(x)) ) ??? xP(x)∨(?xQ(x)

??x ?P(x)∨?x ?Q(x)

) ??x(?P(x)∨?Q(x)

??x(P(x)?Q(x,y))

A.第一步和第二步 B.第一步和第四步 C.第二步和第四步 D.第一步和第五步

8