小相等符号相同.
分析 导体平板间距d << S,忽略边缘效应,导体板近似可以当作无限大带电平板处理。取如图(b)所示的圆柱面为高斯面,高斯面的侧面与电场强度E 平行,电场强度通量为零;高斯面的两个端面在导体内部,因导体内电场强度为零,因而电场强度通量也为零,由高斯定理
?E?dS??q/ε得 ?q?0
S0?0
上式表明处于静电平衡的平行导体板,相对两个面带等量异号电荷.再利用叠加原理,导体板上四个带电面在导体内任意一点激发的合电场强度必须为零,因而平行导体板外侧两个面带等量同号电荷.
证明 (1) 设两块导体平板表面的电荷面密度分别为σ1、σ2、σ3、σ4 ,取如图(b)所示的圆柱面为高斯面,高斯面由侧面S1和两个端面S2、S3构成,由分析可知
?E?dS??q/εS0?0
得
?q?σΔS?σΔS?0,23σ2?σ3?0
9
相向的两面电荷面密度大小相等符号相反.
(2) 由电场的叠加原理,取水平向右为参考正方向,导体内P 点的电场强度为
σ1σσσ?2?3?4?0,σ1?σ4?0 2ε02ε02ε02ε0相背的两面电荷面密度大小相等符号相同.
6 -11 将带电量为Q 的导体板A 从远处移至不带电的导体板B 附近,如 图(a)所示,两导体板几何形状完全相同,面积均为S,移近后两导体板距离为d(dS).
(1) 忽略边缘效应求两导体板间的电势差; (2) 若将B 接地,结果又将如何?
分析 由习题6 -10 可知,导体板达到静电平衡时,相对两个面带等量异号电荷;相背两个面带等量同号电荷.再由电荷守恒可以求出导体各表面的电荷分布,进一步求出电场分布和导体间的电势差.
导体板B 接地后电势为零,B 的外侧表面不带电,根据导体板相背两个面带等量同号电荷可知,A 的外侧表面也不再带电,由电荷守恒可以求出导体各表面的电荷分布,进一步求出电场分布和导体间的电势差. 解 (1) 如图(b)所示,依照题意和导体板达到静电平衡时的电荷分布规律可得
10
?σ1?σ2?S?Q ?σ3?σ4?S?Q
σ1?σ4?0 σ2?σ3?0
解得
σ1?σ2??σ3?σ4?两导体板间电场强度为E?Q 2SQ;方向为A 指向B. 2ε0SQd 2ε0S两导体板间的电势差为 UAB?(2) 如图(c)所示,导体板B 接地后电势为零.
σ1?σ4?0
Qσ2??σ3?
SQ两导体板间电场强度为E??;方向为A 指向B.
ε0S两导体板间的电势差为 U?AB?Qd ε0S6 -12 如图所示球形金属腔带电量为Q >0,内半径为ɑ,外半径为b,腔内距球心O 为r 处有一点电荷q,求球心的电势.
分析 导体球达到静电平衡时,内表面感应电荷-q,外表面感应电荷q;内表面感应电荷不均匀分布,外表面感应电荷均匀分布.球心O 点的电势由
11
点电荷q、导体表面的感应电荷共同决定.在带电面上任意取一电荷元,电荷元在球心产生的电势
dV?dq
4πε0R由于R 为常量,因而无论球面电荷如何分布,半径为R的带电球面在球心产生的电势为
V???dqq ?s4πεR4πεR00由电势的叠加可以求得球心的电势.
解 导体球内表面感应电荷-q,外表面感应电荷q;依照分析,球心的电势 为
V?qqq?Q ??4πε0r4πε0a4πε0b6 -13 在真空中,将半径为R 的金属球接地,与球心O 相距为r(r >R)处放置一点电荷q,不计接地导线上电荷的影响.求金属球表面上的感应电荷总量.
分析 金属球为等势体,金属球上任一点的电势V 等于点电荷q 和金属球表面感应电荷q′在球心激发的电势之和.在球面上任意取一电荷元dq′,电荷元可以视为点电荷,金属球表面的感应电荷在点O 激发的电势为
V???点O 总电势为
dq?
s4πεR0V0?q?V? 4πε0r而接地金属球的电势V0 =0,由此可解出感应电荷q′.
12