华师大版七年级数学下册教案(表格) - 图文 下载本文

第l题:可引导学生画线图分析 等量关系是:AC十CB=400 若设小刚在冲刺阶段花了x秒,即t1=x秒,则t2(65-x)秒,再由等量关系就可列出方程: 6(65-x)+8x=400 四、小结 本节课我们学习了用一元一次方程解答实际问题,列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。 练习教科书第14页习题6.2.2第3、4、5题。 设计 教学反思

9

课题 教 学 目 标 6.3实践与探索(第一课时) 教学时数 1课时 知识与技能 让学生通过独立思考,积极探索,从而发现;围成的长方形的长和宽在发生变化,但在围的过程中,长方形的周长不变,由此便可建立“等量关系”同时根据计算,发现随着长方形长与宽的变化,长方形的面积也发生变化,且长方形的长与宽越接近时,面积越大。通过问题3的教学,让学生初步体会数形结合思想的作用。 让学生通过独立思考,积极探索,从而发现 让学生初步体会数形结合思想的作用。 通过分析图形问题中的数量关系,建立方程解决问题。 找出“等量关系”列出方程。 观察、分析、类比、建模 电子白板、多媒体课件 二次备课 过程与方法 情感、态度 与价值观 教学重点 教学难点 教学方法 现代教学仪器设备 一、复习提问 1.列一元一次方程解应用题的步骤是什么? 2.长方形的周长公式、面积公式。 二、新授 问题1.用一根长60厘米的铁丝围成一个长方形。 (1)使长方形的宽是长的专,求这个长方形的长和宽。 (2)使长方形的宽比长少4厘米,求这个长方形的面积。 (3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的长方形吗? 让学生独立探索解法,并互相交流。第(1)小题一般能由学生独立或合作完成,教师也可提示:与几何图形有关的实际问题,可画出图形,在图上标注相关量的代数式,借助直观形象有助于分析和发现数量关系。 分析:由题意知,长方形的周长始终不变,长与宽的和为60÷2=30(厘米),解决这个问题时,要抓住这个等量关系。 第(2)小题的设元,可让学生尝试、讨论,对学生所得到的结论都应给予鼓励,在讨论交流的基础上,使学生知道,不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。 (3)当长方形的长为18厘米,宽为12厘米时 长方形的面积=18×12=216(平方厘米) 当长方形的长为17厘米,宽为13厘米时 长方形的面积=221(平方厘米) ∴(1)中的长方形面积比(2)中的长方形面积小。 问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把(2)中的宽比长少“4厘米”改为3厘米、2厘米、1厘米、0.5厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积最大呢?并加以验证。 通过计算,发现随着长方形长与宽的变化,长方形的面积也发生变 化,并且长和宽的差越小,长方形的面积越大,当长和宽相等,即成正方形时面积最大。 实际上,如果两个正数的和不变,当这两个数相等时,它们的积最大,通过以后的学习,我们就会知道其中的道理。

10

教 学 过 程 三、巩固练习 教科书第16页练习1、2。 第l题,组织学生讨论,寻找本题的“等量关系”。 用一块橡皮泥捏出的各种形状的物体,它的体积是不变的。因此等量关系是:圆柱的体积=长方体的体积。 第2题,先让学生根据生活经验,开展讨论,解这道题的关键是什么?题中的等量关系是什么? 通过思考,使学生明确要解决“能否完全装下”这个问题,实质是比较这两个容器的容积大小,因此只要分别计算这两个容器的容积,结果发现装不下,接着研究第2个问题,“那么瓶内水面还有多高”呢?如果设瓶内水面还有x厘米高,那么这里的等量关系是什么? 等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积=原来整瓶水的体积。从而列出方程 四、小结 本节课同学们认真思考,积极探索,通过分析图形问题中的数量关系,建立方程解决问题,进一步体会到运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,同学们要联系实际,积极探索,找出等量关系。 练习教科书第18页,习题6.3.1第1、2、3。 设计 教学 反思

11

课题 教 学 目 标 6.3实践与探索(第二课时) 知识与技能 教学时数 1课时 通过分析储蓄中的数量关系,以及商品利润等有关知识,经历运用方程解决实际问题的过程,使学生进一步体会方程是刻画现实世界的有效数学模型。 通过分析储蓄中的数量关系,以及商品利润等有关知识,经历运用方程解决实际问题的过程 体会方程是刻画现实世界的有效数学模型。 探索这些实际问题中的等量关系,由此等量关系列出方程。 找出能表示整个题意的等量关系。 观察、分析、类比、建模 电子白板、多媒体课件 二次备课 过程与方法 情感、态度 与价值观 教学重点 教学难点 教学方法 现代教学仪器设备 一、复习 1.储蓄中的利息、本金、利率、本利和等含义,它们之间的数量关系 利息=本金×年利率×年数 本利和=本金×利息×年数+本金 2.商品利润等有关知识。 利润=售价-成本 =商品利润率 二、新授 在本章6.l练习中讨论过的教育储蓄,是我国目前暂不征收利息税的储种,国家对其他储蓄所产生的利息征收20%的个人所得税,即利息税。今天我们来探索一般的储蓄问题。 问题2、 小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元? 教 学 过 程 先让学生思考,试着列出方程,对有困难的学生,教师可引导他们进行分析,找出等量关系。 利息-利息税=48.6 可设小明爸爸前年存了x元,那么二年后共得利息为 2.43%×X×2,利息税为2.43%X×2×20% 根据等量关系,得 2.43%x·2-2.43%x×2×20%=48.6 问,扣除利息的20%,那么实际得到的利息是多少?你能否列出较简单的方程? 扣除利息的20%,实际得到利息的80%,因此可得 2.43%x·2·80%=48.6 解方程,得 x=1250 例1.一家商店将某种服装按成本价提高40%后标价,又以8折 (即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元? 大家想一想这15元的利润是怎么来的? 标价的80%(即售价)-成本=15 若设这种服装每件的成本是x元,那么 每件服装的标价为:(1+40%)x 12